Semantic Theory: **DRT IV: Presupposition**

Summer 2008

M.Pinkal/S. Thater

Examples

- Presupposition Projection
 - John **possibly** regrets that he has married.
- Presupposition cancellation
 - John possibly regrets that he has married. But possibly, he hasn't married at all.
- Presupposition filtering
 - If John is out of town, then **his wife** is unhappy.
 - If John is married, then **his wife** is unhappy.
- Accommodation
 - The king of Samoa will visit Germany in July.

Presupposition phenomena

- Presuppositions are triggered by a variety of different words and linguistic constructions, including definite noun phrases.
- Presuppositions behave differently than assertions in semantics construction: They are typically projected unchanged, rather than fused through functional application. In particular, they survive even when the presupposition trigger is in the scope of negation.
- Projected presuppositions can be filtered in the semantic composition process, and can be cancelled by contextual knowledge.
- Presupposed information which is missing in context can be accomodated.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Presuppositions in DRT

- Rob van der Sandt: DRT-based modelling of presuppositions
- Basic assumption: Presupposition is anaphora.
- More specifically: All presupposition triggers are anaphoric expressions. The presupposition is the requirement a context must satisfy to enable the anaphoric expression to refer.
- Reference: van der Sandt, R.: 1992, "Presupposition Projection as Anaphora Resolution", Journal of Semantics 9: 333-377

Presupposition as Anaphora

- The student works.
 - Nominal anaphora
 - Context contains an individual who is a student // she works
- John regrets that he is married.
 - Propositional Anaphora
 - Context contains the proposition that Mary is married // John regrets $\underline{\text{this}}$
- John stopped smoking
 - Event anaphora
 - Context contains the habitual event of John's smoking // John has stopped doing \underline{that}

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

- DRS Construction Rules for definite NPs (and other presupposition triggers) introduce "αconditions" or "α-DRSs" as a new type of complex condition.
- DRS construction proceeds in two steps:
 - In a first step, DRS construction rules are applied, resulting in a "proto-DRS", containing α -conditions
- In a second step, the α-DRSs are resolved (transforming the proto-DRS into a standard DRS)
- Anaphora resolution is done either by binding or by accomodation.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

• A student works.

х		
student(x) works(x)		

• A student works. The student is successful.

x	
stud worl	lent(x) <s(x)< td=""></s(x)<>
αγ	У
	student(y)
suco	cessful(y)

• A student works. The student is successful.

Example2: Construction of Proto-DRS

• The king of Samoa is visiting.

• A student works. The student is successful.

ху	
<pre>student(x) works(x) student(y) x = y successful(y)</pre>	

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

• The king of Samoa is visiting.

x	
0LX	X
	king-of-samoa(x)
visi	t(x)

• The king of Samoa is visiting.

DRSConstruction for Definite NPs

- The DRS construction rules for all definite noun phrase types introduce α-DRSs:
- Definite descriptions

(Proto-)DRSes

- A (proto-) DRS is a triple (U_K, C_K, A_K) such that
- $U_{\ensuremath{K}}$ is a set of discourse referents
- C_{κ} is a set of (atomic or complex) conditions
- A_K is a set of "anaphoric" (α -) DRSs of the form $\alpha z K'$, where z is a discourse referent and K' is a proto-DRS.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Complex Alpha-DRSs

"his book"

"the book of a professor"

y z
book(y) of(y, z) professor(z)

Subordination and Accessibility

- K_1 is an immediate sub-DRS of a DRS $K = \langle U_K, C_K, A_K \rangle$ iff C_K contains a condition of the form $\neg K_1, K_1 \Rightarrow K_2, K_2 \Rightarrow K_1, K_1 \lor K_2, K_2 \lor K_1$, or $\alpha x K_1 \in A_K$
- Definitions of sub-DRS, proper sub-DRS and accessibility as before.

Resolution by Binding

- Let K, K', Kt DRSs, K' \leq K, Kt \leq K and
 - $\gamma = \alpha x K_s \in K'$, K_s is α -free
- $\ y \in U_{Kt}$ a DR that is accessible and suitable for γ
- Remove γ from K' and extend K_t with U_{Ks}, C_{Ks}, and the condition x = y.
- Note: The content of an α -DRS is released into the DRS of the discourse referent, which it is bound to.
- Note: Because K_s must be α -free, complex Alpha-DRSs are always resolved from the inside out.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

 If Pedro owns a donkey, he beats his donkey.

Example: Binding [2]

 If Pedro owns a donkey, he beats his donkey.

 If Pedro owns a donkey, he beats his donkey.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

- Let K, K' DRSs, K' \leq K, K_t \leq K
- $\gamma = \alpha x K_s \in K'$, K_s is α -free
- K_{t} a DRS that is accessible for $\boldsymbol{\gamma}.$
- Remove γ from K' and extend K_t with U_{Ks} and C_{Ks}.

 If Pedro owns a donkey, he beats his donkey.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Example: Accommodation [1]

• If Pedro works, he beats his donkey.

• If Pedro works, he beats his donkey.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

- Binding is preferred over accommodation.
- Binding works "upwards" along the accessibility relation: The "closest" possible antecedent is preferred.
- Accommodation works "downwards" along the accessibility relation. It is preferred to accommodate into the highest possible DRS.

- The two resolution rules specify possible sites where α -DRSs can be bound or accommodated.
- But so far, they are highly non-deterministic: We can bind or accommodate almost anywhere!
- We need constraints or preferences for binding and accommodation.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Constraints on Projection

- Free variable constraint: The resolved DRS may not contain any free discourse referents.
- (Local) consistency and informativity constraints

• Every man loves his wife.

The Free Variable Constraint

• Binding of "his" to "every man" blocks the - otherwise preferred - top-level accommodation.

• Every man loves his wife.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

The Free Variable Constraint

• Therefore: Local accommodation only

Presupposition Filtering

- If John is out of town, then his wife is unhappy.
 - presupposes: John is married
- If John is married, then his wife is unhappy.
 - does not presuppose: John is married

1	m	0:0	la
		uu'uu	
	ш		<u>-</u>

Presupposition filtering

- If John is married, then his wife is unhappy.
- Here, global accommodation does not work. It would render the antecedent DRS uninformative.

Presupposition Filtering

 If John is out of town, then his wife is unhappy.

x z w x = John w = x wife((z)	of(z, w)
out-of-town(x)	⇒	unhappy(z) az z
		wife(z) aw w of(z, w)

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

 "Local informativity" constraint blocks global accommodation

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

- The resolved DRS must be consistent and informative.
- **Consistency:** The resolved DRS must be satisfiable (taking background knowledge into account).
- Informativity: The resolved DRS must not be entailed by our background knowledge.
- Local consistency: No sub-DRS must be inconsistent with any superordinate DRS.
- Local informativity: No sub-DRS must be entailed by any superordinate DRS.

Presupposition phenomena

- Presuppositions behave differently than assertions in semantics construction: They are typically projected unchanged, rather than fused through functional application. In particular, they survive even when the presupposition trigger is in the scope of negation. --> Global accommodation
- Projected presuppositions can be cancelled by contextual • knowledge. --> Consistency and informativity constraints
- Projected presuppositions can be filtered in the semantic composition process. --> Local consistency and informativity constraints

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

The following slides are meant as an outlook to further topics and research questions in discourse semantics. They will not be part of the final exam.

- Plural NPs, cardinalities, collective readings
 - Two students gave a presentation.
 - Three men carried the piano upstairs.
 - The students gathered.
 - Three students ate five pizzas.
- Mass nouns:
 - An apple + an apple: apples
 - Apple juice + apple juice: apple juice

- UDRT: U for "Underspecified"
- SDRT: S for "Segmented"
- $\lambda\text{-}DRT\text{:}\ \lambda$ for ,, $\lambda\text{-}calculus\text{``}$

• every student
$$\Rightarrow \lambda$$

alternative notation: $\lambda G \ [\ \varnothing \ | \ [\ z \ | \ student(z) \] \Rightarrow G(z) \]$

• works $\Rightarrow \lambda x [\emptyset | work(x)]$

An expression consists of a lambda prefix and a (partially instantiated) DRS.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

λ -DRT: β-reduction of λ -DRSs

• every student works

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

```
\Rightarrow \lambda G[ \varnothing \mid [z \mid student(z)] \Rightarrow G(z)]](\lambda x.[ \varnothing \mid work(x)])
```

 $\Leftrightarrow [\ \emptyset \ | \ [\ z \ | \ student(z) \] \Rightarrow \lambda x.[\ \emptyset \ | \ work(x) \](z) \]$

```
\Leftrightarrow [ \emptyset | [ z | student(z) ] \Rightarrow [ \emptyset | work(z) ]]
```

 λ -DRT: The "Merge" operation

- a student $\Rightarrow \lambda G ([z | student(z)]; G(z))$
- works $\Rightarrow \lambda x [\emptyset | work(x)]$
- A student works
 - $\Rightarrow \lambda G ([z | student(z)]; G(z))(\lambda x. [\emptyset | work(x)])$
 - \Leftrightarrow [z | student(z)]; λx .[\varnothing | work(x)](z)
 - \Leftrightarrow [z | student(z)]; [\emptyset | work(z)]
 - \Leftrightarrow [z | student(z), work(z)]

- The "merge" operation on DRSs combines two DRSs (conditions and universes).
- It has a similar function as the beta reduction in type theory: Replace a complex formula (the ";"combination of two DRSs) by an equivalent simpler formula.
- It is also similar to DPL conjunction.
- Let $K_1 = [U_1 | C_1]$ and $K_2 = [U_2 | C_2]$. We define: K_1 ; $K_2 = [U_1 \cup U_2 | C_1 \cup C_2]$ under the assumption that no discourse referent $u \in U_2$ occurs free in a condition $\gamma \in C_1$.

- A student works. She is successful.
- Compositional analysis:

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

- λK λK'(K;K')([z | student(z), work(z)])([[successful(z)])
 - $\Leftrightarrow \lambda K'([z | student(z), work(z)];K')([|successful(z)])$
- ? ⇔ [z | student(z), work(z)]:[|successful(z)]
- \Leftrightarrow [z | student(z), work(z), successful(z)]

Via the interaction of β -reduction and DRS-binding, discourse referents are "captured!"

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Higher-order DRT: The challenge

- Via the interaction of β -reduction and DRS-binding, discourse referents are captured.
- But the β -reduced DRS must still be equivalent to the original DRS!
- This means that we somehow have to encode the potential for capturing discourse referents into the denotation of a λ -DRS. Getting this right is tricky.
- Discourse referents and bound variables behave differently! (Discourse referents may be captured.)
- The most transparent formalism of higher-order dynamic semantics is Muskens' Compositional DRT.