Semantic Theory Introduction

Manfred Pinkal
Stefan Thater

2008-04-22

Compositional Semantics:

Research Questions

- What is the meaning of a sentence? How can we represent it?
- How can we compute semantic representations for a given sentence?
- How can we deal with (structural) ambiguity?

Structure of the Course

- Part I: Compositional Semantics
- Type Theory, Semantics Construction, Scope Ambiguities, Underspecification
- Part II: Discourse Semantics
- Discourse Representation Theory (DRT), Anaphora and Coreference, Definite Descriptions, Presuppositions
- Part III: Lexical Semantics
- Event and Frame Semantics, Metaphor and Metonymy, Generative Lexicon

Sentence Meaning

- To know the meaning of a (declarative) sentence S is to know the conditions under which the sentence is true.
- Meaning of $S=$ truth-conditions of S
- "Max reads a book" is true iff ...
- The meaning of a sentence can be represented by logical expressions:
- $\exists x(\operatorname{book}(x) \wedge$ read $(\max , x))$ is true iff ...
- Note that there are also aspects of meaning "beyond" truth-conditions (e.g., anaphora, implicatures, ...).

Predicate Logic: Syntax

- Non-logical expressions:
- Individual constants: CON
- n -place predicate symbols: PRED ${ }^{n}$ (for all $\mathrm{n} \geq 0$)
- Individual variables: VAR
- Terms: TERM = VAR u CON

Representing Meaning

(1) Max is a student
\Rightarrow student(max)
(2) Max reads a book
$\Rightarrow \exists x(\operatorname{book}(x) \wedge \operatorname{read}(\max , x))$
(3) Not all students passed the exam
$\Rightarrow \neg \forall x($ student $(x) \rightarrow$ pass $(x$, the-exam))
$\Rightarrow \exists y(\forall z(\operatorname{exam}(z) \leftrightarrow z=y) \wedge \neg \forall x($ student $(x) \rightarrow \operatorname{pass}(x, z))$

Predicate Logic: Syntax

- Atomic formulas:
- $R\left(t_{1}, \ldots, t_{n}\right) \quad$ for $R \in$ PRED $^{n}, t_{1}, \ldots, t_{n} \in$ TERM
- $\mathrm{s}=\mathrm{t}$
for $s, t \in T E R M$
- Well-formed formulae: the smallest set FORM such that
- all atomic formulas are in FORM
- if A, B are in FORM, then
$\neg A,(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in FORM
- If x is an individual variable and A is in FORM, then $\forall x A$ and $\exists x A$ are in FORM

Predicate Logic: Semantics

- Expressions of Predicate Logic are interpreted relative to model structures and variable assignments
- Model structures: $M=\left\langle U_{M}, V_{M}\right\rangle$
- U_{M} is a non-empty universe (domain of individuals)
- V_{M} is an interpretation function assigning individuals ($\in U_{M}$) to individual constants and n-ary relations over U_{M} to n-place predicate symbols.
- Assignment function for variables $g:$ VAR $\rightarrow \mathrm{U}_{\mathrm{M}}$

Predicate Logic: Semantics

- Interpretation of terms with respect to a model structure M and a variable assignment g :
- $\llbracket \alpha \rrbracket^{\mathrm{M}, g}=\mathrm{V}_{\mathrm{M}}(\alpha)$, if α is an individual constant
- $\llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}=\mathrm{g}(\alpha)$, if α is a variable

Predicate Logic: Semantics

- Interpretation of formulas with respect to a model structure M and variable assignment g :


```
    |s=t \ \ M,g=1 iff }\mathbb{|}s\mp@subsup{\mathbb{Z}}{}{M,g}=\mathbb{|}t\mp@subsup{\mathbb{\}}{}{M,g
```



```
    \llbracket\varphi->\psi \mp@subsup{\mathbb{Z}}{}{M,g}=1}\quad\mathrm{ iff }|\varphi\mp@subsup{\mathbb{I}}{}{M,g}=0\mathrm{ or }\mathbb{|}\psi\mp@subsup{\mathbb{M}}{}{M,g}=
```



```
        \llbracket\forallX\varphi}\mp@subsup{\mathbb{\}}{}{M,g}=1 iff for all d \in UM,\mathbb{I}\varphi\mp@subsup{\mathbb{\}}{}{M,g[x/d]}=
```

- $g[x / d]$ is the variable assignment which is identical to g except that it assigns the individual d to variable x.

Entailment

(1) [At the end of the year,] all companies [have tol file an annual report.
(2) [At the end of the year,] all solid companies [have to] file an annual report.
(3) [At the end of the year,] all companies pay a dividend.
(4) [At the end of the year,] all companies pay a cash dividend.

Computing Meaning

- How can we automatically compute a semantic representation for a given sentence?
- Basic idea: we consider the syntactic structure of a sentence, and recursively "read off" a semantic representation from the syntax tree.

"Every student is successful"

(1) Every student is successful
(2) $\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))$ (student)(successfull)
(3) $\forall x$ (student $(x) \rightarrow$ successfull $(x))$

A Challenge for Semantic Composition

(1) Every student reads a book.
(2) $\forall x(\operatorname{student}(x) \rightarrow \exists y(\operatorname{book}(y) \wedge r e a d(x, y)))$

- Solution: Type Theory
- "every" $\Rightarrow \lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))$
- "a" $\Rightarrow \lambda P \lambda Q(P(x) \wedge Q(x))$
- ...

14

Another Challenge:

Scope Ambiguities
(1) Every student reads a book
$\Rightarrow \forall x($ student $(x) \rightarrow \exists y(\operatorname{book}(y) \wedge \operatorname{read}(x, y)))$
$\Rightarrow \exists y(\operatorname{book}(y) \wedge \forall x($ student $(x) \rightarrow \operatorname{read}(x, y)))$
(2) Every student did not pass [the exam]
$\Rightarrow \forall x($ student $(x) \rightarrow \neg$ pass $(x))$
$\Rightarrow \neg \forall x($ student $(x) \rightarrow \operatorname{pass}(x))$
(3) Pola wants to marry a millionaire
\qquad

Underspecification

(1) Every student reads a book.

17

Discourse Semantics

- How are semantic discourse representations built up from sequences of sentences in text or turns in a dialogue?
- How does sentence meaning interact with context, yielding the intended utterance information?
- How can we infer the relevant information in the respective situation from the utterance information?

Structure of the Course

- Part I: Compositional Semantics
- Type Theory, Scope Ambiguities, Underspecification
- Part II: Discourse Semantics
- Discourse Representation Theory (DRT), Anaphora and Coreference, Definite Descriptions, Presuppositions
- Part III: Lexical Semantics
- Event and Frame Semantics, Metaphor and Metonymy, Generative Lexicon

Context Dependence

- Deictic expressions point to objects in the physical or visual utterance situation:
- I, you, here, this, ...
- Anaphoric expressions refer to objects in the linguistic context
- he, she, it, his, her, one ("the one you are holding")

Context Dependence

- Almost all expressions are dependent on context in one or the other way.
(1) Every student must be familiar with the basic properties of first-order logic.
(2) John is always late.
(3) Its hot and sunny everywhere.
(4) Another one, please!

Definite and Indefinite Noun

Phrases

- In text and discourse semantics, there is a "collaboration" between indefinite and definite noun phrases
- A professor owns a book. He likes the book.
- Indefinite noun phrases introduce reference objects ("discourse referents"). Anaphora and definite noun phrases can be used to refer to them anaphorically.
- Discourse representation theory (DRT) models this process.

Discourse Representation Theory

(1) A professor owns a book.

Discourse Representation Theory

- A professor owns a book. He likes the book

$x y z u$
$\operatorname{professor}(x)$
$\operatorname{book}(y)$
$\operatorname{own}(x, y)$
$z=x$
$u=y$
$\operatorname{like}(z, u)$

Discourse Representation Theory

(1) If a professor owns a book, he reads it.

Lexical Semantics

- What is word meaning?
- How can it be appropriately represented and organised?
- How can it be acquired in an efficient way?

Structure of the Course

- Part I: Compositional Semantics
- Type Theory, Scope Ambiguities, Underspecification
- Part II: Discourse Semantics
- Discourse Representation Theory (DRT), Anaphora and Coreference, Definite Descriptions, Presuppositions
- Part III: Lexical Semantics
- Event and Frame Semantics, Metaphor and Metonymy, Generative Lexicon

Major Word-Semantic Categories

- Function words:
- Connectives and quantifiers
- auxiliary and modal verbs,
- Temporal and modal adverbials, ...
- Content words
- Common nouns.
- Full verbs,
- Adjectives
- Other
- Named Entities (Persons, institutions, geographic entities, ...)
- Numbers, ...

Entailment

(1) Insurgents in Iraq killed five U.S. soldiers [...]
(2) Insurgents have attacked U.S. troops [...]
(3) Greek coastguard officials [...] have found a body on a boad [...]
(4) Coastguard officials have found a dead man.

Word Senses of "body" (WordNet)

- S: (n) body, organic structure, physical structure (the entire structure of an organism (an animal, plant, or human being)) "he felt as if his whole body were on fire
- S: (n) body (a group of persons associated by some common tie or occupation and regarded as an entity) "the whole body filed out of the auditorium"; "the student body"; "administrative body"
- $\mathrm{S}:(\mathrm{n})$ body, dead body (a natural object consisting of a dead animal or person) "they found the body in the lake"
- S: (n) body (an individual 3-dimensional object that has mass and that is distinguishable from other objects) "heavenly body"
- S: (n) torso, trunk, body (the body excluding the head and neck and limbs) "they moved their arms and legs and bodies"
- [...]

30

The Word-Meaning Relationship

- No one-to-one relation between
- phonological / orthographic words and
- senses / word meanings / concepts
- One sense / concept can be encoded in different phonological words: Synonymy
- One phonological word can be associated with several senses: Lexical ambiguity
- Homonymy (unrelated senses)
- Polysemy (semantically related concepts)

Semantic Relations

- Hyponymy / Hypernymy (the "IS-A" relation):
- dolphin - mammal
- Synonymy:
- case-bag
- Meronymy/Holonymy
- Part / Whole : branch - tree
- Member / Group: tree - forest
- Matter / Object: wood - tree
- Contrast
- Complementarity: boy - girl
- Antonymy: long - short

Semantic Relations

34

Verb Alternations

(1) The window broke
(2) A rock broke the window
(3) John broke the window with a rock

- $(3) \vDash(2) \vDash(1)$
- $\operatorname{break}_{3}(x, y, z) \vDash \operatorname{break}_{2}(z, y) \vDash \operatorname{break}_{1}(y)$

Thematic Roles

(1) [The window] pat broke
(2) $[A \text { rock }]_{\text {inst }}$ broke $[\text { the window }]_{p a t}$
(3) $[J o h n]_{a g}$ broke $[\text { the window] }]_{p a t}[\text { with a rock] }]_{\text {inst }}$

- Some thematic roles:
- Agent
- Theme / Patient / Object
- Recipient
- Instrument
- ...

A More Complex Example

- Which Airlines buy planes from Airbus?
- Airbus sells five A380 superjumbo planes to China Southern for 220 million Euro
- China Southern buys five A380 superjumbo planes from Airbus for 220 million Euro
- Airbus arranged with China Southern for the sale of five A380 superjumbo planes at a price of 220 million Euro
- Five A380 superjumbo planes will go for 220 million Euro to China Southern

Thematic Roles and Frames

- COMMERCIAL TRANSACTION
- SELLER: Airbus
- BUYER: China Southern
- GOODS: five A380 superjumbo planes
- PRICE: 220 million Euro

Berkeley FrameNet

- Frames: an inventory of conceptual structures modelling a prototypical situation like COMMERCIAL TRANSACTION
- Semantic roles are locally valid only and accordingly called "Frame Elements" (FE):
- Frame elements of the COMMERCIAL TRANSACTION frame: BUYER, SELLER, GOODS, PRICE,
- A set of "target words" associated with each frame: e.g., for COMMERCIAL TRANSACTION:
- buy, sell, pay, spend, cost, charge,
- price, change, debt, credit, merchant, broker, shop
- tip, fee, honorarium, tuition

Organisational Issues

- Books
- Website
- Exercises
- Exercise vs. lecture sessions
- Final Exam

