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Discourse Representation Theory
(DRT)

Text ∑ = 〈 S1, S2 , . . . , Sn 〉

Syntactic analysis P(S1) P(S2) . . .    P(Sn)

 K1 K2 . . . Kn

Interpretation by model embedding:
        Truth conditions of  ∑

DRS construction K0
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An example

• A professor owns a book. He reads it.

Det N V

ownsprofessora

NP VP

S

Det N

booka

NP
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An example

• A professor owns a book. He reads it.

V

owns

x VP

S

Det N

booka

NP

professor (x)

x
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An example

• A professor owns a book. He reads it.

V

owns

x VP

S

y

professor(x)
book(y)

x  y

6Semantic Theory, SS 2007 © M. Pinkal, S. Thater

An example

• A professor owns a book. He reads it..

professor(x)
book(y)
own(x, y)

x  y
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An example

• A professor owns a book. He reads it.

professor(x)
book(y)
own(x, y)

x  y

NP

he

S

V NP

itreads

VP
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An example

• A professor owns a book. He reads it.

professor(x)
book(y)
own(x, y)
z = x

x  y  z

z

S

V NP

itreads

VP
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An example

• A professor owns a book. He reads it.

professor(x)
book(y)
own(x, y)
z = x
u = y

x  y  z  u

z

S

V u

reads

VP
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An example

• A professor owns a book. He reads it.

professor(x)
book(y)
own(x, y)
z = x
u = y
read(z, u)

x  y  z  u



6

11Semantic Theory, SS 2007 © M. Pinkal, S. Thater

The Highest Triggering Configuration
Constraint

• If two triggering configurations of one or two
different DRS construction rules occur in a
reducible condition, then first apply the
construction rule to the highest triggering
configuration.

• The highest triggering configuration is the one
whose top node dominates the top nodes of all
other triggering configurations.
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DRT: Denotational Interpretation

• Let
– UD a set of discourse referents,
– K = 〈UK, CK〉 a DRS with UK ⊆ UD,
– M = 〈UM, VM〉 a FOL model structure

appropriate for K.
• An embedding of K into M is a (partial)

function f from UD to UM such that UK ⊆
Dom(f).
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Verifying embedding

• An embedding f of K in M verifies K in M:
f I=M K iff f verifies every condition α ∈ CK.

• f verfies condition α in M (f |=M α):
(i) f |=M R(x1,…, xn) iff〈f(x1), ... , f(xn)〉 ∈

VM(R)
(ii) f |=M x = a iff f(x) = VM(a)
(iii) f |=M x = y iff f(x) = f(y)
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Truth

• Let K be a closed DRS and M be an appropriate model
structure for K.
K is true in M iff there is a verifying embedding f of K in M
such that Dom(f) = UK

• Let D be a discourse/text, K a DRS that can be
constructed from D.
D is true with respect to K in M iff K is true in M.

• Let D be a discourse/text, which is true with respect to all
DRSes that can be consructed from D:
D is true in M iff D is true with respect to all DRSes that
can be constructed from D.
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• DRS K = 〈{x1, ..., xn}, {c1, ..., ck}〉

is truth-conditionally equivalent to the
following FOL formula:
∃x1...∃xn[c1 ∧ ... ∧ ck]

x1 . . . xn

c1 . . . cn

Translation of DRSes to FOL
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Basic features of DRT

• In particular, DRT explains the ambivalent
character of indefinite NPs: Expressions
that introduce new reference objects into
context, and are truth conditionally
equivalent to existential quantifiers.

• DRT models linguistic meaning as
anaphoric potential (through DRS
construction) plus truth conditions (through
model embedding).
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DRT II: Extensions

• Conditionals, indefinites and anaphora
• Complex conditions
• Accessibility
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Indefinite NPs and conditionals

Indefinite NPs and conditional clauses:
• If an error occurs, the computer crashes.

(1) ∃x[error(x) & occurs(x)] → Crash
(2) ∀x[error(x) & occurs(x) → Crash]

• The formulas (1) and (2) are logically
equivalent:
∃xA → B ⇔ ∀x[A → B]

if x doesn't occur as a free variable in B.
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Indefinite NPs, Conditionals, and
Anaphora

• If an error occurs, it is displayed.
(1)∃x[error(x) & occurs(x)] → display(x)
(2)∃x[error(x) & occurs(x) → display(x)]
(3)∀x[error(x) & occurs(x) → display(x)]

• Problem: (1) is not closed; (2) has wrong truth
conditions (much too weak); (3) is correct, but
how do you derive this compositionally?

• This is called the donkey sentence problem, with
reference to the classical example by P.T. Geach
(1967): If a farmer owns a donkey, he beats it.
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Indefinite NPs and Discourse Structure

• A car is parked in front of Peter's garage. Peter
needs to get to the office quickly. He doesn't
know who owns the car. He calls the police, and
it is towed away.

• Suppose a car is parked in front of Peter's
garage. Peter needs to get to the office quickly.
He doesn't know who owns the car. Then he will
call the police, and it will be towed away.

• Let a and b be two positive integers. Let b further
be even. Then the product of a and b is even too.
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Context-dependent interpretation of
indefinites

• The „quantificational force“ of indefinites
depends on context:
– Existential in plain assertions and narrative

contexts
– Universal in conditional or hypothetical

reasoning.
• DRT offers uniform treatment in DRS

construction, different truth conditional
interpretation induced is by the respective
context.
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DRS for conditionals: An example

• If a professor owns a book, he reads it.

⇒a professor
owns a book

he reads it
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DRS for conditionals: An example

• If a professor owns a book, he reads it.

⇒professor(x)
book(y)
owns(x, y)

x y

he reads it
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DRS for conditionals: An example

• If a professor owns a book, he reads it.

⇒professor(x)
book(y)
owns(x, y)

reads(z, v)
z = x
v = y

z vx y
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DRS (1st Extension)

• A discourse representation structure (DRS) K is a
pair 〈UK, CK〉, where
– UK is a set of discourse referents
– CK is a set of conditions

• (Irreducible) conditions:
– R(u1, . . . , un) R n-place relation, ui ∈ UK

– u = v u, v ∈ UK

– u = a u ∈ UK, a is a proper name
– K1 ⇒ K2 K1 and K2 DRSes

• Reducible conditions: as before
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DRS Construction Rule for
Conditionals

• Triggering configuration:
– α is a reducible condition in DRS K of the form

[S if [S β] (then) [S γ]]

• Action:
– Remove α from CK .
– Add K1 ⇒ K2 to CK, where

• K1 = 〈∅, { β }〉  and
• K2 = 〈∅, { γ }〉

• Remark: K1 ⇒ K2 is called a duplex condition; K1
the "antecedent DRS" and K2  the "consequent
DRS".
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Recap: DRT Embeddings

• Let
– UD a set of discourse referents,
– K = 〈UK, CK〉 a DRS with UK ⊆ UD,
– M = 〈UM, VM〉 an FOL model structure

appropriate for K.
• An embedding of K into M is a (partial) function f

from UD to UM such that UK ⊆ Dom(f).
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Verifying embeddings (1st extension,
preliminary)

• An embedding f of K into M verifies K in M:
f I=M K iff f verifies every condition α ∈ CK.

• f verifies condition α in M (f |=M α):
(i) f |=M R(x1,…, xn) iff〈f(x1), ... , f(xn)〉 ∈

VM(R)
(ii) f |=M x = a iff f(x) = VM(a)
(iii) f |=M x = y iff f(x) = f(y)
(iv)f |=M K1 ⇒ K2 iff 

     for all g ⊇ f   s.t. Dom(g) = Dom(f) ∪ UK1
     and g |=M K1, we also have g |=M K2
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Notation: Extending embeddings

Let f, g be partial functions (embeddings) on UD;
U ⊆ UD ; x, y ∈ UD

We write
–  f ⊇U g for "f ⊇ g and Dom(f) = Dom(g) ∪ U"
–  f ⊇{x1, ..., xn} g for

     "f ⊇ g and Dom(f) = Dom(g) ∪ {x1, ..., xn}"
–  f ⊇x g for "f ⊇{x} g".

So we can write (iv) as follows:
(iv) f |=M K1 ⇒ K2 iff

          for all g ⊇ UK1
f  s.t. g |=M K1, we have g |=M K2

30Semantic Theory, SS 2007 © M. Pinkal, S. Thater

The definition seems to work ...

• If a professor owns a book, he reads it.

⇒professor(x)
book(y)
owns(x, y)

reads(z, v)
z = x
v = y

z vx y

K1: K2: K3:
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... but it doesn't really!

A slightly more complex example:
• Peter is-a professor.

If he owns a book, he gives it to a student.

⇒

z  v  w 
 

gives(z,v,w) 
z = x 
v = y 
student(w) 

x  y 
 
x = u
book (y) 
owns (x, y) 

u 
 
u = Peter
professor(u)  
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Verifying embeddings for conditionals
(final)

• An embedding f of K into M verifies K in M:
f I=M K iff f verifies every condition α ∈ CK.

• f verifies condition α in M (f |=M α):
(i) f |=M R(x1,…, xn) iff    〈f(x1), ... , f(xn)〉 ∈

VM(R)
(ii) f |=M x = a iff    f(x) = VM(a)
(iii) f |=M x = y iff    f(x) = f(y)
(iv)f |=M K1 ⇒ K2 iff    for all g ⊇UK1

 f s.t. g |=M K1
there is a h ⊇UK2

 g s.t. h |=M K2
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DRS construction rule for universal
NPs

• Triggering configuration:
– α is a reducible condition in DRS K; α contains

a subtree [S [NP β] [VP γ]] or [VP [V γ] [NP β]]
– β = every δ

• Action:
– Remove α from CK.
– Add K1 ⇒ K2 to CK, where

• K1 = 〈{x}, {δ(x)}〉  and
• K2 = 〈∅, {α'}〉
• obtain α' from α by replacing β by x
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DRS construction rule for negations

• Triggering configuration:
– α is a reducible condition in DRS K of the form

[S β [VP doesn't [VP γ]]]

• Action:
– Remove α from CK .
– Add ¬K1 to CK, where K1 = 〈∅, {[S β [VP γ]]}〉,
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Example

• A professor doesn't own a book.

V

own

VP

S

Det N

booka

NP

Det N

professora

NP VP

doesn‘t
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Example

• A professor doesn't own a book.

V

own

VP

S

Det N

booka

NP

x VP

doesn‘t

x

professor (x)
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Example

• A professor doesn't own a book.

V

own

VP

S

Det N

booka

NP

x

x

professor (x)

¬
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Example

• A professor doesn't own a book.

x

professor (x)
y 

book(y)
owns(x, y)

¬
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Example: A second reading

• A professor doesn't own a book.

V

own

VP

S

Det N

booka

NP

Det N

professora

NP VP

doesn‘t
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Example: A second reading

• A professor doesn't own a book.

¬

V

owns

VP

S

Det N

booka

NPDet N

professora

NP
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Example: A second reading

• A professor doesn't own a book.

x y 

professor (x)
book(y)
owns(x, y)

¬
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DRS construction rule for clausal
disjunction

• Triggering configuration:
– α is a reducible condition in DRS K of the form

 [S [S β] or [S γ]]
• Action:

– Remove α from CK .
– Add K1 ∨ K2 to CK, where

• K1 = 〈∅, {β}〉 and
• K2 = 〈∅, {γ}〉
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An example

• A student reads a book, or a professor
reads a paper.

∨
x y u v

student(x)
book(y)
reads(x, y)

professor(u)
paper(v)
reads(u, v)
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DRS (2nd Extension)

• A discourse representation structure (DRS) K is
a pair 〈UK, CK〉, where
– UK is a set of discourse referents
– CK is a set of conditions

• (Irreducible) conditions:
– R(u1, . . . , un) R n-place relation, ui ∈ UK

– u = v u, v ∈ UK

– u = a u ∈ UK, a is a proper name
– K1 ⇒ K2 K1 and K2 DRSs
– K1 ∨ K2 K1 und K2 DRSs
– ¬K1 K1 DRS
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Verifying embeddings

• f verifies condition α in M (f |=M α):
(i) f |=M R(x1,…, xn) iff     〈f(x1), ... , f(xn)〉 ∈ VM(R)
(ii) f |=M x = a iff     f(x) = VM(a)
(iii) f |=M x = y iff     f(x) = f(y)
(iv) f |=M K1 ⇒ K2 iff     for all g ⊇UK1

 f s.t. g |=M K1 

                                                     there is a h ⊇UK2
 g s.t. h |=M K2

(v) f I=M ¬K1 iff     there is no g ⊇UK1
f s.t. g |=M K1

(vi) f I=M K1 ∨ K2 iff     there is a g1 ⊇UK1
f s.t. g1|=M K1

                               or there is a g2 ⊇UK2
f s.t. g2 |=M K2
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Translation of DRT to FOL

• DRSs
T(〈{u1, …, un}, {c1, …, cn}〉) = ∃u1 … ∃un[T(c1) ∧ … ∧ T(cn)]

• Conditions:
T(c) = c for atomic conditions c
T(¬K1) = ¬T(K1)
T(K1 ∨ K2)= T(K1) ∨ T(K2)
T(K1 ⇒ K2) = ∀u1 … ∀un[(T(c1) ∧ … ∧ T(cn)) →
T(K2)],

     for K1 = 〈{u1, … , un}, {c1, … , cn}〉
• For every closed DRS K and every appropriate

model M, it can be shown that K is true in M iff
T(K) is true in M.
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Anaphora and accessibility

• Mary knows a professor. If she owns a
book, he reads it. It fascinates him.

w u s t

w = Mary professor(u) knows(w, u)

fascinates(s, t)
t = u
s = ?

⇒

x  y z  v

reads(z, v)
z = u
v = y

x = w
book(y)
owns(x, y)
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Anaphora and accessibility

• Mary knows a professor. If she owns a
book, he reads it. ?It fascinates him.

w u s t

w = Mary professor(u) knows(w, u)

fascinates(s, t)
t = u
s = ?

⇒

x  y z  v

reads(z, v)
z = u
v = y

x = w
book(y)
owns(x, y)
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Accessible discourse referents

• The following discourse referents are
accessible for a condition:
– DRs in the same local DRS
– DRs in a superordinate DRS
– DRs on the top level of an antecedent DRS, if

the condition occurs in the consequent DRS.
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Accessible discourse referents

• Cases of non-accessibility:
– If a professor owns a book, he reads it. It has

300 pages.
– It is not the case that a professor owns a book.

He reads it.
– Every professor owns a book. He reads it.
– If every professor owns a book, he reads it.
– Peter owns a book, or Mary reads it.
– Peter owns a book, or Mary owns a CD. He

hasn't read it yet.
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Subordination

• A  DRS K1 is an immediate sub-DRS of a DRS
K = 〈UK, CK〉 iff CK contains a condition of the form
¬K1, K1 ⇒ K2, K2 ⇒ K1 , K1 ∨ K2 or K2 ∨ K1.

• K1 is a sub-DRS of K (notation: K1 ≤ K) iff
(i) K1 = K or
(ii) K1 is an immediate sub-DRS of K or
(iii) there is a DRS K2 s.t. K2 ≤ K1 and

K1 is an immediate sub-DRS of K.
(i.e. reflexive, transitive closure)

• K1 is a proper sub-DRS of K iff K1 ≤ K and K1 ≠ K.
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Accessibility

• Let K, K1, K2 be DRSs s.t. K1, K2 ≤ K, x ∈
UK1

, γ ∈ CK2

• x is accessible from γ in K iff
(i) K2 ≤ K1 or
(ii) there are K3, K4 ≤ K s.t. K1 ⇒ K3 ∈ CK4

 and K2
≤ K3
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Revised DRS Construction rules for
NPs

• Triggering Configuration:
– Let K* be the main DRS that containing K
– α a reducible condition in DRS K, containing [S

[NP β] [VP γ]] or [VP [V γ] [NP β]] as substructure
– β a personal pronoun.

• Action:
– Add a new DR x to UK.
– Replace β in α by x.
– Select an appropriate DR y that is accessible

from α in K*, and add x = y to CK.
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DRS Construction Rule for Proper
Names

• Triggering Configuration:
– Let K* be the main DRS that containing K
– α a reducible condition in DRS K, containing [S

[NP β] [VP γ]] or [VP [V γ] [NP β]] as substructure.
– β a proper name

• Action:
– Add a new DR x to UK*.
– Replace β in α by x.
– Add x = β to CK*.
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Is accessibility a truth-conditional
property?

• There is a book that John doesn‘t own.
He wants to buy it.

• John does not own every book.
?He wants to buy it.

• One of the ten balls is not in the bag.
It must be under the sofa.

• ? Nine of the ten balls are in the bag.
It must be under the sofa.
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DRT is non-compositional

• DRT is non-compositional on truth conditions:
The different discourse-semantic status of the
text pairs is not predictable through the (identical)
truth conditions of its component sentences.

• Since structural information which cannot be
reduced to truth conditions is required to compute
the semantic value of texts, DRt is called a
representational theory of meaning.
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• Why can’t we just marry type theoretic semantics with
DRT?

• Use λ-abstraction and reduction a we did before, but:
• Assume that the target representations which we want to

arrive at are not First-Order Logic formulas, but DRSes.
• The result is called naïve λ-DRT.

Wait a minute …
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• every student ⇒  λG

alternative notation:  λG [ ∅ | [ z | student(z) ] ⇒ G(z) ]

• works ⇒ λx [ ∅ | work(x) ]

An expression consists of a lambda prefix and a (partially
instantiated) DRS.

λ-DRSes

z

student(z)
⇒ G(x)
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λ-DRT: β-reduction

• every student works

⇒ λG[ ∅ | [ z | student(z) ] ⇒ G(z) ]](λx.[ ∅ |
work(x) ])

⇔ [ ∅ | [ z | student(z) ] ⇒ λx.[ ∅ | work(x) ](z) ]

⇔ [ ∅ | [ z | student(z) ] ⇒ [ ∅ | work(z) ]]
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• a student    ⇒  λG ([ z | student(z) ]; G(z))
• works         ⇒  λx [ ∅ | work(x) ]

• A student works
⇒ λG ([ z | student(z) ];G(z))(λx.[ ∅ | work(x)])
⇔ [ z | student(z) ]; λx.[ ∅ | work(x)](z)
⇔ [ z | student(z) ]; [ ∅ | work(z)]
⇔ [ z | student(z), work(z)]

λ -DRT: The “Merge” operation
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Merge

• The “merge” operation on DRSs combines two DRSs
(conditions and universes).

• It has a function which is comparable to beta reduction:
Replace a complex formula (the “;”-combination of two
DRSs) by an equivalent simpler formula.

• It is also similar to DPL conjunction.
• Let K1 = [ U1 | C1 ] and K2 = [ U2 | C2 ].

Then: K1; K2 ⇒ [ U1 ∪ U2 | C1 ∪ C2 ]
under the assumption that no discourse referent
u∈ U2 occurs free in a condition γ ∈ C1.
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• A student works. She is successful.
• Compositional analysis:
• λK λK’(K;K’)([ z | student(z), work(z)])([

|successful(z)])
⇔ λK‘([z | student(z), work(z)];K‘)([ |successful(z)])
⇔ [z | student(z), work(z)];[ |successful(z)]
⇔ [z | student(z), work(z), successful(z)]

λ-DRT and Merge: An example
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λK‘([z | student(z), work(z)];K‘)([ |successful(z)])
⇔ [z | student(z), work(z)];[ |successful(z)]
⇔ [z | student(z), work(z), successful(z)]

• Via the interaction of β-reduction and DRS-
binding, discourse referents are captured.

• But the β-reduced DRS must still be equivalent to
the original DRS!

• This means that we somehow have to encode the
potential for capturing discourse referents into the
denotation of a λ-DRS. Getting this right is tricky.

Why is this naïve?
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• Compositional DRT (R. Muskens)
• Dynamic Lambda Calculus (M. Kohlhase/ S.

Kuschert/ M. Pinkal)

Solutions
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Higher-order DRT: The challenge

• Via the interaction of β-reduction and DRS-
binding, discourse referents are captured.

• But the β-reduced DRS must still be equivalent to
the original DRS!

• This means that we somehow have to encode
the potential for capturing discourse referents into
the denotation of a λ-DRS. Getting this right is
tricky.

• Discourse referents and bound variables behave
differently! (Discourse referents may be
captured.)


