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Underspecification
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• Sentences with two or more scope bearing operators such 

as quantifiers, negations, … are often ambiguous:

• “Every student presents a paper.”

– $x(student’(x) % (y(paper’(y) ) present’(x,y)))

– (y(paper’(y) ) $x(student’(x) % present’(x,y)))

• “Every student didn’t pay attention.”

– $x(student’(x) % ¬pay-attention’(x))

– ¬$x(student’(x) % pay-attention’(x))

Scope ambiguities

• Compositional semantic construction: the readings are 

determined by the syntactic structure.

• How can we derive more than one reading if the sentence 

has only one syntactic structure?
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Sentence Semantic representationSyntactic analysis

…

Semantic representation

…

Semantic representation

Scope Ambiguities: Problem #1

?

?
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Nested Cooper Storage

• “Every student presents a paper.”

– !present*(x2)(x1), {

" !#P $x[student’(x) % P(x)], &'1, " " " [ = !ES, &'1 ]

" !#Q (y[paper’(y) ) Q(y)],&'2   }'" " [ = !AP, &'2 ]

• Retrieval:

1. ES(#x2(AP(#x1(present*(x2)(x1)))))

*+ (y(paper’(y) ) $x(student’(x) % present*(y)(x)))

2. AP(#x1(ES(#x2(present*(x2)(x1)))))

*+ $x(student’(x) % (y(paper’(y) ) present*(y)(x)))



Nested Cooper Storage

• Storage techniques like Nested Cooper Storage allow to 

derive several distinct readings on the basis of a single 

syntactic analysis.

– Problem #1 solved (… to a certain extent)

• But note that Nested Cooper Storage has its own 

problems:

– Non-determinism (storage vs. application)

– For certain types of sentences it is not possible to derive all 

reading (e.g., “every student did not pay attention.”)
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• Combinatorial explosion of readings: the number of 

readings can grow exponentially with the number of scope 

bearing operators.

– “Most politicians can fool most voters on most issues most of 

the time, but no politician can fool every voter on every 

single issue all of the time.”

(ca. 600 readings, Hobbs)

– “But that would give us all day Tuesday to be there.”

(ca. 65000 readings according to the ERG)

Scope Ambiguities: Problem #2
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• Some sentences can be evaluated semantically without 

having to commit to one scope reading: 

– “In Saarbrücken, many scientists at several institutes are 

working on numerous interesting research problems in 

different areas of semantics.”

– “Every student must speak two foreign languages. This is 

definitely too much.”

Enumeration of Readings is 

sometimes not necessary
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• The disambiguation to one reading can occur naturally as 

the discourse progresses: 

– “Every student must speak two foreign languages. These 

languages are taught at our department.”

– “Every student must speak two foreign languages. Appendix 

1 of the Studienordnung lists the twenty admissible 

languages.”

Immediate Enumeration of 

Readings is not always necessary
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• Sentences can contain “spurious ambiguities”

– “We quickly put up the tents in the lee of a small hillside and 

cook for the first time in the open.”

– 480 readings according to the English Resource Grammar …

– but only 2 equivalence classes, characterised by the relative 

scope of “the lee of” and “a small hillside”

Enumeration of Readings is not 

always necessary
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• World knowledge can exclude some readings:

– “A rabbit is in every hat.”

– “She has a finger in every pie.”

• Preferences, such as

– Word order

– Intonation

– Choice of determiners: “a search engine for every subject” 

vs. “a search engine for each subject”

– (from Language Log: A quantifier for every season)

Disambiguating Factors
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• By using storage techniques, we can compute the 

readings of scopally ambiguous sentences 

compositionally.

• But …

– the number of readings can grow exponentially with the 

number of scope-bearing elements.

– enumerating all readings can thus take a long time.

– most of this time is wasted.

So where do we stand?

• Derive a single underspecified semantic representation 

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings excluded 

by the context.

• Enumerate readings by need.
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Underspecification: the big picture

Sentence Semantic representationSyntactic analysis

…

Semantic representation

…

Semantic representation

USR
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• Basic observation:

– The readings of scopally ambiguous sentences are made up 

of the same set of constants, connectives and variables, and 

differ only in their structure

– “Every student reads a book.”

– $x(student’(x) % (y(book’(y) ) read’(x,y)))

– (y(book’(y) ) $x(student’(x) % read’(x,y)))

• Basic idea:

– Consider semantic representations as trees

– Describe sets of trees using dominance graphs 

Scope Underspecification Scope Underspecification: the Idea

• “Every student reads a book”

– $x(student’(x) % (y(book’(y) ) read’(y)(x)))

– (y(book’(y) ) $x(student’(x) % read’(y)(x)))

• Readings as trees:
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Scope Underspecification: the Idea
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(USR) (Readings as trees)

Outline

• Terms as trees

• Dominance graphs as descriptions of sets of trees

• Semantics construction with dominance graphs

• Things you can do with dominance graphs

16
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• Terms (and formulas) of type theory have a natural 

reading as trees:

– Application M(N) is the tree @(M,N)

– Abstraction #x.M is the tree lam(M)

– Quantifiers analogously 

– Constant symbols correspond to leaf labels

– Variables x correspond to leaves with label varx.

– (Alternatively: binding edges, see slides at the end)

Terms as Trees

• sleep’(j*)

• Alternative notation

(used later for semantics construction)
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Terms as Trees

@

sleep’ j*

sleep’ j*

@
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Terms as Trees

• $x(student’(x),%,intelligent’(x))

!x

"

@ @

student’ varx intelligent’ varx
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Terms as Trees

• (#F.F(j*))(sleep’)

!F

@

varF j*

sleep’

@



21

• Informally, a dominance graph is a directed graph which 

consists of trees (or “tree fragments”) which are 

connected by dominance edges.

• For modeling scope underspecification, we consider 

labeled dominance graphs, i.e. pairs of a dominance 

graph and a partial node labeling function L

– L must be defined on all non-leaves of the tree fragments

– Leaves may be unlabelled

• Terminology:

– Unlabeled leaves are called “holes”

– Nodes without incoming tree edges are called “roots”

Dominance Graphs An Example
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• Three tree fragments that 

informally correspond to

– $x(student’(x) % …)

– (y(book’(y) ) …)

– read(y)(x)

• The two upper fragments 

each have one hole.

• The holes have outgoing 

dominance edges to the 

root of the lower fragment.
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Dominance Graphs

• More formally, a dominance graph is defined as a directed 

graph G = (V, E - D) where V is a set of nodes and

– E is a set of “tree edges”  (solid edges)

– D is a set of “dominance edges”  (dotted edges)

• The subgraph (V, E) must be a forest, i.e. it is acyclic and 

no node has more than one incoming (tree-) edge.

• Labelled dominance graphs: G = (V, E - D, L) where L is a 

partial labelling function mapping nodes in V to labels of 

some signature ..
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Solved Forms

• A dominance graph G can be seen as a description of a 

set of trees into which G can be embedded.

• These trees can be represented by the solved forms of G. 

• A dominance graph GS is said to be in solved form if it is a 

forest, i.e. no node has more than one incoming 

dominance edge.

• GS is a solved form of some dominance graph G if

– GS is in solved form

– GS and G differ at most in their dominance edges, and

– if nodes X and Y are connected by a dominance edge in G, 

then there is a directed path from X to Y in GS.
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An Example
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An Example
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Not a solved form of …

27

• The dominance graph on the right is in solved form, but it 

is not a solved form of the graph on the left

– the dominance edge from the $-fragment to the read-

fragment is not realised as reachability in the right graph
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An unsolvable graph

• Not all dominance graphs have a solved form
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@

student’ varx

!x

"

  



Solved Forms – Remark #1

• As said earlier, the solved forms of a dominance graph G 

represent the trees into which G can be embedded.

– (these trees are the solutions of G)

• For modeling scope underspecification, we are usually 

interested in a particular class of solutions called 

constructive solutions.

• Not every solved form corresponds to a constructive 

solution, but recent studies indicate that the solved forms 

of all “linguistically relevant” graphs all correspond to 

constructive solutions.
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Solved Forms – Remark #1

• Basic idea: if each hole of a 

solved form has exactly one 

outgoing dominance edge, …

• then one can obtain a 

constructive solution by 

identifying the two ends of each 

dominance edge.
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Solved Forms – Remark #2

• We can distinguish various sub-classes of dominance 

graphs, depending on which kinds of dominance edges 

are permitted

– In normal dominance graphs, dominance edges are only 

permitted between holes and roots.

– Weakly normal dominance graphs additionally permit root-to-

root dominance edges (but not hole-to-root edges)

• Note that for dominance graphs with hole-to-root 

dominance edges, we need a more general definition of a 

solved form.

• (The graphs considered in this lecture are all normal)
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Where are we now?

• Formulas (readings of natural language sentences) can be 

seen as trees.

• These trees can be described by dominance graphs …

• in the sense that the solved forms of a graph correspond 

to the readings of the underlying sentence.

• Next step: Semantic construction for dominance graphs.
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• For every node in the syntax tree, we derive a dominance 

graph as follows:

– Each syntax rule is associated with a semantics rule that 

combines dominance graphs.

– Each of these sub-dominance graphs has an interface node 

that is used to connect it with other subgraphs.

– The USR for the whole sentence is then the dominance graph 

associated with the root of the sentence.

Semantics Construction: Principles

• Rule of lexical nodes:

The semantic representation (sub-graph) + for a word “a” 

is supplied by the lexicon.
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a

A

+

Lexicon access

A

Semantics construction rules
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• S % NP VP

• VP % TV NP

• NP % PN

@

(VP) (NP)

@

(TV) (NP)

(PN)

Interface nodes
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An Example

S

NP VP

PN TV NP

PNJohn loves

Mary

love' m*

j*



An Example
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An Example
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An Example

39

S
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@

Semantic representation: love’(m*)(j*)
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Quantifiers

• The graph for a quantifier noun 

phrase contains a variable node 

and its binder.

• The interface node of the graph 

is the node that represents the 

variable (of type e)

every
varx

@

@ lamx

student’



Constructing Graphs for 

Quantifiers

• Lexicon entry for determiners (here “every”):
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every

lamP

!

@ @

lamQ

"x

varP varx varQ varx

Constructing Graphs for 

Quantifiers

• Syntax rule: NP % Det N’
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An Example
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An Example
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An Example
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S
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• In a final step, we replace

dominance edges pointing

into fragments by dominance

edges pointing to the root of

the fragment.

• Corresponding formula:

– (#P#Q$y[P(y) % Q(y)])(student’)(#x sleep’(x))

– *+ $y[student’(y) % sleep’(y)]

After “Normalisation”
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Scope Ambiguities
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Scope Ambiguities
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Scope Ambiguities
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Scope Ambiguities
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• We still use type theory as the object language, i.e. the 

language of semantic representations.

• However, types no longer drive the construction process.

• We use far fewer lambdas for “construction bookkeeping”; 

we replace this by plugging USRs into each other directly.

• This makes us more flexible in our choice of semantic 

representations:

– can use john* of type e for proper names

– can use present* of type !e,!e,t'' for transitive verbs

An observation
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• The quantifier representation is split into two parts:

– a variable of type e which the verb is applied to; this is like 

the x
i
 that is introduced in the Nested Cooper Storage rule.

– a fragment containing a quantifier representation of type 

!!e,t',t', which is applied at some point to what would be the 

“semantic content” in Nested Cooper Storage.

• The two components are connected by binding and 

dominance edges.

• The variable binding is introduced together with the 

variable and the binder; no need for “variable capturing.”

An observation about NPs
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• As in type theory, we use variable names to model the 

relation between a binder (#, $, () and the variables 

bound by it.

• In an underspecification context,

variable names aren’t always 

sufficient to indicate the binder

for each variable:

• Problem could be solved by requiring that variables are 

named apart.

• Binding edges are a cleaner and simpler way of doing it.

Representing variable binding

P

!x "x

@

varx
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• Assume a third type of edges: binding edges

• All variables have label “var,” and labels representing 

lambda-binders as “lam” (quantifiers analogously)

• The graph for “every student presents a paper” with 

binding edges:

Using binding edges

sleep’

@

var

@

@ lam

student’

every

@

@ lam

paper’

a

@

var

Things one can do with

dominance graphs

• Deciding solvability

– given a dominance graph G, has G as solved form?

• Enumerating solved forms

– given a dominance graph G, enumerate the (minimal) solved 

forms of G.

• Eliminating redundant readings

– Strengthen an USR G such that it has fewer readings, but still 

contains a representative for each equivalence class of G.
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Other Formalisms

• Dominance constraints

– Logical descriptions of trees

– Important fragments: normal and weakly normal dominance 

constraints

• Minimal Recursion Semantics

– Similar to weakly normal dominance constraints (or graphs)

– Standard underspecification formalism used in HPSG

• Hole Semantics

• Glue Semantics

• (and many more …)
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Relation to dominance graphs

• Weakly normal dominance graphs are equivalent to 

weakly normal dominance constraints.

• Important subsets of both Minimal Recursion Semantics 

and Hole Semantics can be translated into (normal) 

dominance graphs

– Restriction: the USRs must have certain structural properties

– Conjecture: all USRs needed to model scope 

underspecification have these properties.
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• Enumerating all readings is typically a waste of time.

• Underspecification: Enumerate only by need.

• Dominance graphs: Encode readings as trees; use graphs 

as underspecified semantic representations.

• Simple semantics construction that combines sub-

dominance graphs.

• Each syntactic combination rule is associated with a 

semantic combination rule.

Conclusion


