
Semantic Theory:
Scope

Summer 2007

M.Pinkal/ S. Thater

2Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Sentence Semantics
• Step 1: FOL Representations
• Step 2: Types and Higher-order Logic

– Higher-order expressions (higher-order predicates, adjectives,
degree modifiers)

– Function application as basic operation for semantics construction
– Unified, compositional semantics for noun phrases

• Step 3: λ-expressions and β-reduction
– Higher-order expressions for semantic composition
– Obtaining FOL sentence representations through β-reduction
– Semantics Construction with Transitive Verbs

• Step 4: Treatment of scope variation
– Cooper Storage
– Underspecification

3Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Semantics Construction: Basic rules

• Rule of functional application:

• Rule of non-branching nodes:

A

B C

B ⇒ β: <σ, τ>
C ⇒ γ:σ
A ⇒ β(γ): τ

B ⇒ β: σ
C ⇒ γ: <σ, τ>
A ⇒ γ(β): τ

or

A

B

B ⇒ β: τ
A ⇒ β: τ

4Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Semantics Construction: Basic rules

• Rule of lexical nodes:

The semantic representation β for the word "a" is
supplied by the lexicon.

A

a A ⇒ β: τ

5Semantic Theory, SS 2007 © M. Pinkal, S. Thater

An example

S

NP VP

DET N V

Every student works

λFλG∀x(F(x)→ G(x)) student' work'

6Semantic Theory, SS 2007 © M. Pinkal, S. Thater

An example

S

NP VP

DET N V

Every student works

(λFλG∀x(F(x)→ G(x)))(student')

⇔β λG∀x(student'(x)→ G(x))

work'

7Semantic Theory, SS 2007 © M. Pinkal, S. Thater

An example

S

NP VP

DET N V

Every student works

λG∀x(student'(x)→ G(x)) work'

8Semantic Theory, SS 2007 © M. Pinkal, S. Thater

An example

S

NP VP

DET N V

Every student works

(λG∀x(student'(x)→ G(x)))(work')

⇔β ∀x(student'(x)→ work(x))

9Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Scope: Terminology

• Logic: Quantifier & Scope

∀x(student'(x)→ work(x))

• NL Semantics
– Determiner+Restriction form NP-Denotation

(„Generalized Quantifier“)
– NP Denotation is applied to its Nuclear Scope

Every'(student')(work')

10Semantic Theory, SS 2007 © M. Pinkal, S. Thater

A Note on Notation

• Either: Use expanded notation from the
beginning (e.g.,λG λG ∀x(F(x)→ G(x))), and
simplify (i.e., beta-reduce) as early as possible

• Or: Use abbreviations (every'), and expand them
later:
– Every'(student')(work')
– λG λG ∀x(F(x)→ G(x))(student')(work')

• Or: Combine both in a sensible way
• But: Don‘t rewrite expanded forms, whenever you

can avoid it

11Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Variable NP Scope

• Every linguist speaks two languages
• Our company has an expert for every

problem
• A search engine for every subject

12Semantic Theory, SS 2007 © M. Pinkal, S. Thater

NPs and scope-sensitive operators

• Every student didn‘t pay attention
• Every citizen can become president
• During his visit to China, Helmut Kohl

intends to visit a factory for CFC-free
refrigerators

13Semantic Theory, SS 2007 © M. Pinkal, S. Thater

The problem of scope variation

• The scope of noun phrases is not
determined by the syntactic position in
which they occur.

• Divergence between syntactic and
semantic structure is a challenge for
compositionality and semantics
constructions.

• Scope variation may lead to a proliferation
of readings

14Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Scope ambiguity

Every student presents a paper.
(a) ∀x[student'(x) → ∃y[paper'(y) ∧
present'(x,y)]]

(b) ∃y[paper'(y) ∧ ∀x[student'(x) →
present(x,y)]]

Every student didn't pay attention.
(a) ∀x[student'(x) → ¬pay-attention'(x)]

(b) ¬∀x[student'(x) → pay-attention'(x)]

15Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Scope ambiguity

• Every researcher of a company saw some
sample.

1. ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))
2. ∃z(spl'(z) ∧ ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → see'(x,z))
3. ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))
4. ∃y(cp'(y) ∧ ∃z(spl'(z) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))
5. ∃z(spl'(z) ∧ ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

Every researcher of a company saw some
samples of most products.

16Semantic Theory, SS 2007 © M. Pinkal, S. Thater

So far, we get only one reading

VP
λx ∃y paper(y) ∧ present*(y)(x) : <e,t>

TV
λQ Q λx[QQ(λz[present*(z)(x)])] : <<<e,t>,t>,<e,t>>

NP
λG∃y paper(y) ∧ G(y) : <<e,t>,t>

presents a paper

NP
λH ∀x paper(y) → H(y) : <<e,t>,t>

every student

S
∀x[student(x) → ∃y[paper(y) ∧ present*(y)(x)]] : t

17Semantic Theory, SS 2007 © M. Pinkal, S. Thater

The problem with scope

• Sentences with scope ambiguities can have
multiple semantic representations for a syntactic
constituent.

• The order of the scope-bearing elements
(quantifiers, negation, adverbs, ...) don't
necessarily follow the order of the syntactic
combination.

• But: With the approach we have so far, we can
only derive a single semantic representation for
each constituent.

• How can we solve this problem?

18Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Example

NPV

NP VP

S

every student

presents a paper

present*(x2)(x1)

∃y(paper'(y) ∧ present*(y)(x1))

∀x(student'(x) → ∃y(paper'(y) ∧ present*(y)(x)))

19Semantic Theory, SS 2007 © M. Pinkal, S. Thater

The missing reading

• We get one reading of the sentence by deriving
the following terms:

• We should be able to construct the second
reading correspondingly:

∀x(student'(x) → ∃y(paper'(y) ∧ present*(y)(x)))
∃y(paper'(y) ∧ present*(y)(x1))

present*(x2)(x1)

∃y(paper'(y) ∧ ∀x(student'(x) → present*(y)(x)))
∀x(student'(x) → present*(x2)(x))

present*(x2)(x1)

20Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Solving the scope problem:
Principles

• We can obtain the second reading by delaying
the application of the inner noun phrase.

• To this purpose, we have to:
– temporarily store the noun phrase denotation away

– formally bind the object argument position by a
variable

– make sure that the correct argment position will be
bound, when the „real“ noun prase denotation is
eventually applied

21Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Using lambda abstraction
(„Quantifying-in“)

• Abstract over the correct variable and then apply
the NP representation to the abstracted term.

λG∃y(paper'(y) ∧ G(y))(λx2. λF∀x(student'(x)→ F(x))(λx1.present*(x2)(x1)))
λF∀x(student'(x)→ F(x))(λx1.present*(x2)(x1))

present*(x2)(x1)

λF∀x(student'(x)→ F(x))(λx1. λG∃y(paper'(y) ∧ G(y))(λx2.present*(x2)(x1)))
λG∃y(paper'(y) ∧ G(y))(λx2.present*(x2)(x1))

present*(x2)(x1)

• Problem: How can we do this compositionally?

22Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage

• One algorithm for deriving such
representations compositionally is Nested
Cooper Storage (Keller 1988). It repairs
some problems of the original Cooper
Storage (Cooper 1975).

• Cooper Storage technique is used to
compute the set of all semantic readings
nondeterministically from a single syntactic
analysis.

23Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage: Principles

• The semantic values of syntactic constituents are
ordered pairs 〈α, Δ〉:
– α ∈ WEτ is the content

– Δ is the quantifier store: a set of NP representations
that must still be applied.

• At NP nodes, we may store the content in Δ.

• At sentence nodes, we can retrieve NP
representations from the store in arbitrary order
and apply them to the appropriate argument
positions.

24Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage: Storage

B ⇒ 〈γ, Γ〉 B is an NP node
———————————————————————
B ⇒ 〈λP.P(xi), {〈γ, Γ〉i}〉 where i ∈ N is a new index

• Using this rule, we can assign more than one semantic
value to an NP node.

• The content of the new semantic value is just a
placeholder of type <<e,t>,t>, and the old value
(including its store) is moved to the store.

25Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage: Old Rules
Adjusted

• Rule of functional application:

• Rule of non-branching nodes:

• Rule of lexical nodes:

A

B C

B ⇒ 〈β, Δ〉
C ⇒ 〈γ, Γ〉
A ⇒ 〈β(γ), Δ ∪ Γ〉

B ⇒ 〈β, Δ〉
C ⇒ 〈γ, Γ〉
A ⇒ 〈γ(β), Δ ∪ Γ〉

or

A

B

B ⇒ 〈β, Δ〉
A ⇒ 〈β, Δ〉

A

a A ⇒ 〈β, ∅〉

26Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage: Principles

• A syntactic constituent may be associated
with multiple semantic values of this form.

• A lambda term M counts as a semantic
representation for the entire sentence iff we
can derive 〈M, ∅〉 as a value for the root of
the syntax tree.

• Hence, there may be more than one valid
semantic representation for the complete
sentence.

27Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage: Retrieval

A ⇒ 〈α, Δ ∪ {〈γ, Γ〉i}〉 A is any sentence node
——————————————————————
A ⇒ 〈γ(λxiα), Δ ∪ Γ〉

• Using this rule, we can apply a stored NP.
• At this point, the correct λ-abstraction for the variable

associated with the stored element is introduced.
• The old store Γ is released into the store for A.

28Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage: Example

Every student presents a paper.

NP
〈λQ∃y[paper'(y) ∧ Q(y)], ∅〉

<λP.P(x2), {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

V
〈λQ Q λx[QQ(λy[present*(y)(x)])], ∅〉

NP
〈λP∀x[student'(x) → P(x)], ∅〉

<λP.P(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1}〉

VP
〈λx[pres*(x2)(x)], {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

S
〈pres*(x2)(x1),

{〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

Every student

presents a paper

(only showing the results
from the blue values here)

29Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Retrieval: Reading 1

• By applying the Retrieval rule, we can derive the
following representation for the S node:
〈pres*(x2)(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1,

〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉 ⇒R 〈λQ∃y[paper'(y) ∧
Q(y)](λx2.pres*(x2)(x1)),

{〈λP∀x[student'(x) → P(x)], ∅〉1 }〉
⇒β 〈∃y[paper'(y) ∧ pres*(y)(x1)], {〈λP∀x[student'(x) →
P(x)], ∅〉1 }〉
⇒R 〈λP∀x[student'(x) → P(x)](λx1.∃y[paper'(y) ∧
pres*(y)(x1)]), ∅〉
⇒β 〈∀x[student'(x) → ∃y[paper'(y) ∧ pres*(y)(x)]], ∅〉

30Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Retrieval: Reading 2

〈pres*(x2)(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1,

〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉 ⇒R 〈λP∀x[student'(x) →
P(x)] (λx1.pres*(x2)(x1)),

{〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉
⇒β 〈∀x[student'(x) → pres*(x2)(x)], {〈λQ∃y[paper'(y) ∧
Q(y)] , ∅〉2}〉
⇒R 〈λQ∃y[paper'(y) ∧ Q(y)](λx2.∀x[student'(x) →
pres*(x2)(x)]), ∅〉
⇒β 〈∃y[paper'(y) ∧ ∀x[student'(x) → pres*(y)(x)]], ∅〉

31Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Compositionality

• The Compositionality Principle as stated earlier:
The meaning of a complex expression is uniquely
determined by the meaning of its subexpressions
and its syntactic structure.

• Nested Cooper Storage shows: We can maintain
this principle even in the face of semantic (scope)
ambiguity, if we use a relaxed concept of
„meaning“.

32Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Compositionality and NCS

• Two versions of the Compositionality Principle:
– on the level of denotations

– on the level of semantic representations

• Nested Cooper Storage is clearly compositional
on the level of semantic representations - but in a
less straightforward way than last week's
construction algorithm.

• Compositional on the level of denotations: only in
a very indirect sense.

33Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Scope islands

• Nested Cooper Storage makes the simplifying
assumption that NPs can be retrieved at all
sentence nodes.

• This is not true in general because sentence-
embedding verbs create scope islands:
– John said that he saw every girl. (1 reading)

• Quantifiers may not be lifted across the S node of
the embedded clause; the sentence cannot mean
"for every girl x, John said that he saw x".

34Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Scope ambiguities in real-world texts

• Some large-scale grammars (e.g. the English
Resource Grammar) compute semantic
representations with scope.

• The ERG analyses all NPs as scope bearers to
keep the grammar simple. (This is not
necessarily correct: proper names, definites, etc.)

• Median number of scope readings in the
Rondane corpus: 55.
(But: The median number of semantic
equivalence classes is only 3!)

35Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Conclusion

• Last week's type-driven semantics construction is a nice
first step.

• But it is fundamentally unable to deal with semantically
ambiguous sentences.

• Scope ambiguity: Application order of NP representations
can be different from syntactic structure.

• Nested Cooper Storage: Equip semantic representations
with a quantifier store to allow flexible application of
quantifiers; multiple semantic representations per
syntactic constituents allowed.

