Outline

- Elementary semantics construction:
- the "principle of compositionality"
- compositional semantics construction using type theory
- Quantified noun phrases: A challenge for compositionality
- The lambda operator in type theory

The Principle of Compositionality

- The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and the syntactic rules by which they are combined.
- (The principle is also called "Frege's principle")

Two Levels of Interpretation

- Semantic interpretation is a two-step process
- Natural language (NL) expressions are assigned a semantic representation (logical formulas).
- The semantic representation is truth-conditionally interpreted.
- Truth-conditional interpretation of logical representations is strictly compositional.
- We also want this for the process of computing logical representations from NL expressions.

Compositional Semantics

Construction

- Basic idea: we start with a syntactic analysis of an NL expression, and
- assign each syntactic node in the syntax tree a semantic representation
- by combining the representations of its daughter nodes.

Basic Rules

- Rule of functional application

${ }_{1}^{A}$
 w

- The semantic representation β for a word w is supplied by the lexicon.

Basic Rules

- Rule of functional application

$$
\begin{array}{ll}
B \Rightarrow \beta:\langle\sigma, \tau\rangle \\
\frac{C \Rightarrow \gamma: \sigma}{A \Rightarrow \beta(\gamma): \tau}
\end{array} \quad \text { or } \quad \begin{aligned}
& B \Rightarrow \beta: \sigma \\
&
\end{aligned} \quad \begin{aligned}
& A \Rightarrow \gamma(\beta): \tau
\end{aligned}
$$

- Rule for non-branching nodes

$$
\frac{B \Rightarrow \beta: \tau}{A \Rightarrow \beta: \tau}
$$

$$
\begin{aligned}
& \text { A } \\
& \text { | } \\
& \text { B }
\end{aligned}
$$

An Example

Noun phrases and compositionality

9

Noun phrases and compositionality

[^0]
Noun phrases and compositionality

10

Towards a unified semantics of NPs

- "John works."
j*:e work': 〈e,t
work'(j*) : t
- "Every student works."
$\underline{\text { every-student' : }\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle \text { work' : }\langle\mathrm{e}, \mathrm{t}\rangle}$ every-student'(work') : t

Towards a unified semantics of NPs

- "John works."

$$
\frac{\text { john' }:\langle\langle e, t\rangle, t\rangle \text { work' }:\langle e, t\rangle}{\text { john' }^{\prime}(\text { work' }): \mathrm{t}}
$$

- "Every student works."
$\frac{\text { every-student' : }\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle \quad \text { work' }:\langle e, t\rangle}{\text { every-student' }\left(\text { work' }^{\prime}\right): \mathrm{t}}$
$\lambda x\left(\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x})\right)$

λ-Abstraction

- $\lambda x(\operatorname{drive}(x) \wedge \operatorname{drink}(x))$
- a term of type $\langle\mathrm{e}, \mathrm{t}\rangle$
- denotes the property of being "an x such that x drives and drinks"
- λ-abstraction is an operation that takes an expression and "opens" or "re-opens" specific argument positions by abstracting over a variable
- The result of abstraction over individual variable x in the formula 'drive $(x) \wedge \operatorname{drink}(x)$ ' results in the complex predicate ‘ $\lambda x($ drive $(x) \wedge \operatorname{drink}(x))$.'

λ-Abstraction: Semantics

- If $\alpha \in \mathrm{WE}_{\mathrm{T}}, \mathrm{v} \in \mathrm{VAR}_{\sigma}$, then
- [$\lambda \mathrm{\lambda v} \alpha]^{\mathrm{M}, \mathrm{g}}$ is that function $\mathrm{f}: \mathrm{D}_{\mathrm{\sigma}} \rightarrow \mathrm{D}_{\tau}$ such that for all $a \in D_{\sigma}, f(a)=[[\alpha]]^{M, g[v / a]}$
- Notice that of course $f \in D_{(\sigma, \tau)}$.
- In general: $\left[[(\lambda v \alpha)(\beta)]^{M, g}=[[\alpha]]^{M, g[v / \llbracket \beta}\right] \rrbracket^{M, g]}$

β-Reduction

- By the modified variable assignment, the value of the argument of the λ-expression is passed through its body and becomes the value of all occurrences of variables bound by the λ-operator.
- We obtain the same result, if we first substitute the free occurrences of the λ-variable in $\lambda v \alpha(\beta)$ by the argument β, and only then interpret the result:
- $[[\lambda v \alpha(\beta)]]^{\mathrm{M}, g}=[[\alpha]]^{\mathrm{M}, g[v /[\beta \beta \rrbracket M, g]}$ to
- $[[] v \alpha(\beta)]]^{\mathrm{M}, \mathrm{g}}=[[[\beta / v] \alpha]]^{\mathrm{M}, \mathrm{g}}$
- This is the basic idea behind the λ-calculus.

$$
17
$$

Variable capturing

- Are $\lambda \mathrm{v} \alpha(\beta)$ and $[\beta / v] \alpha$ always equivalent?
- $\lambda x\left[\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right]\left(j^{*}\right) \Rightarrow \operatorname{drive}{ }^{\prime}\left(j^{*}\right) \wedge \operatorname{drink}^{\prime}\left(j^{*}\right)$
- $\lambda x\left[\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right](y) \Rightarrow \operatorname{drive}^{\prime}(y) \wedge \operatorname{drink}^{\prime}(y)$
- $\lambda x[\forall y \operatorname{know}(x)(y)]\left(j^{*}\right) \Rightarrow \forall y \operatorname{know}\left(j^{*}\right)(y)$
- $\lambda x\left[\forall y k^{n}{ }^{\prime}{ }^{\prime}(x)(y)\right](y) \nRightarrow \forall y \operatorname{know}(y)(y)$
- Let v, v' be variables of the same type, α any wellformed expression. v is free for v^{\prime} in α iff no free occurrence of v^{\prime} in α is in the scope of a quantifier or a λ-operator that binds v.

Conversion rules in the λ-calculus

- β-conversion: $\lambda v \alpha(\beta) \Leftrightarrow[\beta / v] \alpha$
if all free variables in β are free for v in α
- α-conversion: $\lambda v \alpha \Leftrightarrow \lambda v^{\prime}\left[v^{\prime} / v\right] \alpha$
if v^{\prime} is free for v in α.
- η-conversion: $\lambda \mathrm{v}(\alpha(\mathrm{v})) \Leftrightarrow \alpha$
- The rule which we will use most in semantics construction is β-conversion in the left-to-right direction (β-reduction), which allows us to simplify representations.

An Example

- "John drives and drinks."
$\frac{\frac{\operatorname{drive}^{\prime}:\langle e, t\rangle x: e}{\operatorname{drive}^{\prime}(x): t} \quad \frac{\operatorname{drink}^{\prime}:\langle e, t\rangle x: e}{\operatorname{drink}^{\prime}(x): t}}{\lambda x\left(\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right):\langle\mathrm{t}, \mathrm{t}\rangle} \quad j^{*}: \mathrm{e}$
$\lambda x\left(\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x})\right)\left(\mathrm{j}^{*}\right)$
$\Rightarrow \beta$ drive $\left(j^{*}\right) \wedge \operatorname{drink}^{\prime}\left(\mathrm{j}^{*}\right)$

Back to Noun Phrases

- We were looking for a uniform representation for noun phrases:
- All noun phrases are uniformly represented as terms of type $\langle\langle e, t\rangle, t\rangle$ i.e., expressions that denote sets of first-order properties P (type $\langle e, t\rangle$).
- Interpretation of "John:" the set of properties P such that John has property P.
- Interpretation of "every student:" the set of properties P such that every student has P.
- and so on ...

More Noun Phrases

```
            John = \lambdaG[G(j*)]
```

 John = \lambdaG[G(j*)]
 Somebody }=>\lambdaG\existsxG(x
 Somebody }=>\lambdaG\existsxG(x
 A student }=>\lambdaG\existsx(student(x) ^ G(x)
 A student }=>\lambdaG\existsx(student(x) ^ G(x)
 No student }=>\lambdaG\neg\existsx(\mathrm{ student(x) ^G(x))
 No student }=>\lambdaG\neg\existsx(\mathrm{ student(x) ^G(x))
 John }=>\lambdaG[G(j*)
 John }=>\lambdaG[G(j*)
 John and Mary }=>\lambdaG[G(\mp@subsup{j}{}{*})\wedgeG(m*)

```
John and Mary }=>\lambdaG[G(\mp@subsup{j}{}{*})\wedgeG(m*)
```


Back to Noun Phrases

- Interpretation of "John:" the set of properties P such that John has property P:
- $\lambda P\left[P\left(j^{*}\right)\right]$
- Interpretation of "every student:" P belongs to the set if every student has property P
- $\lambda P\left[\forall x\left(\right.\right.$ student $\left.\left.{ }^{\prime}(x) \rightarrow P(x)\right)\right]$
- Interpretation of "a student:" P belongs to the set if a student has property P
- $\lambda P\left[\exists x\left(\right.\right.$ student $\left.\left.{ }^{\prime}(x) \wedge P(x)\right)\right]$

"John sleeps"

S

"Every student works"

"Every student works."

Back to Adjectives

- "John is a blond criminal"
- criminal'(j*) ^ blond'(j*)
- "John is a famous criminal"
- criminal' $\left(j^{*}\right) \wedge$ famous ${ }^{\prime}\left(j^{*}\right)$?
- "John is an alleged criminal"
- criminal'(j*) ^ alleged'(j*) ???

"John is a blond criminal."

```
\(\lambda P\left[P\left(j^{*}\right)\right]\left(\right.\) blond \({ }^{\prime}(\) criminal') \(): ~ t\) \(\Rightarrow\) blond'(criminal')(j*) : t
```


Adjective Classes

- Adjectives can be classified with respect to the way they combine the adjective and noun meanings:
- intersective adjectives (blond, carnivorous, ...): $[[$ blond N$]]=[[$ blond]] $\cap[[\mathrm{N}]]$
- subsective adjectives (skillful, typical, ...): $[[$ skillful N$]] \subseteq[[\mathrm{N}]$
- privative adjectives (past, fake, ...): $[[$ past $N] \cap[[\mathrm{N}]]=\varnothing$
- there are also other non-subsective adjectives that are not privative (alleged, ...)

A new problem with adjectives

- We want the best of both worlds:
- compositional semantics construction
- explicit and meaningful final semantic representations
- We don't have this yet for intersective adjectives.
- We can get this in two different ways
- use meaning postulates
- use more explicit lambda terms

Meaning Postulates

- Characterise the meaning of a predicate that stands for a word (e.g., "blond") by using logical axioms.
- Meaning postulate for intersective adjectives:
- $\forall P \forall x$ (blond $\left.{ }^{\prime}(P)(x) \rightarrow P(x)\right)$
- These axioms would be part of our background knowledge.
- For example, we could infer "criminal(john)" from "blond(criminal)(john)" and this axiom.

More explicit lambda terms

- For intersective adjectives, we can also do it by assigning the word a more elaborate lambda term:
- $\lambda P \lambda x(P(x) \wedge$ blond'(P)(x))
- or alternatively as
- $\lambda P \lambda x\left(P(x) \wedge\right.$ blond $\left.^{*}(x)\right)$
- where "blond*" is a constant of type $\langle\mathrm{e}, \mathrm{t}\rangle$ which should denote the set of blond individuals in the universe
- This will beta-reduce to the formula we want.

The solution: Type-Raising

- Raise the type of the first-order relation:
- present: $\langle\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle$

VP
$\operatorname{present}^{\prime}\left(\lambda G \exists y\left(\operatorname{paper}^{\prime}(\mathrm{y}) \wedge \mathrm{G}(\mathrm{y})\right)\right):\langle\mathrm{e}, \mathrm{t}\rangle$

Transitive Verbs

- A composition problem

present' : $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle \quad \lambda \mathrm{G} \exists \mathrm{y}\left(\operatorname{paper}^{\prime}(\mathrm{y}) \wedge \mathrm{G}(\mathrm{y})\right):\langle(\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$
I
presented

every student $\Rightarrow \lambda F \forall x\left(\right.$ student $\left.^{\prime}(x) \rightarrow F(x)\right):\langle\langle e, t\rangle, t\rangle$
a paper $\Rightarrow \lambda G \exists y(\operatorname{paper}(\mathrm{y}) \wedge \mathrm{G}(\mathrm{y})):\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$
presented \Rightarrow present: $\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$

Transitive Verbs

- But now our semantic representation no longer betareduces to a FOL formula
- $\forall x[$ student $(x) \rightarrow \operatorname{present}(\lambda G \exists y \operatorname{paper}(y) \wedge G(y))(x)]$
- Same problem as with intersective adjectives, same solution.
- Represent transitive verbs like "present" as follows:
- $\lambda \mathrm{Q} \lambda \times[\mathrm{Q}(\lambda y[p r e s e n t *(y)(x)])]:\langle\langle\langle e, t\rangle, t\rangle,\langle e, t\rangle\rangle$,
- where present*: $\langle e,\langle e, t\rangle\rangle$

"... presented a paper"

- a paper $\Rightarrow \lambda G \exists z(p a p e r \prime(z) \wedge G(z)$
- presented $\Rightarrow \lambda Q \lambda \times\left[Q\left(\lambda y\left[p^{2}{ }^{2}{ }^{*}(y)(x)\right]\right)\right]$
- presented a paper
$\Rightarrow \lambda Q \lambda x[Q(\lambda y[p r e s e n t *(y)(x)])]\left(\lambda G \exists z\left(p^{*}{ }^{\prime}{ }^{\prime}(z) \wedge G(z)\right)\right)$
$\Rightarrow \lambda x\left[\lambda G \exists z\left(\right.\right.$ paper $\left.\left.^{\prime}(z) \wedge G(z)\right)(\lambda y[p r e s e n t *(y)(x)])\right]$
$\Rightarrow \lambda x\left[\exists z\left(\right.\right.$ paper'$^{\prime}(z) \wedge \lambda y[$ present $\left.*(y)(x)](z)\right]$
$\Rightarrow \lambda x[\exists z($ paper' $(z) \wedge$ present*(z)(x)]

Conclusion

- Semantics construction is not so easy for nontrivial sentences.
- With lambda-abstraction and application, these sentences can be treated in a straightforward way.
- Lambda abstraction is a very natural and straightforward extension to lambda-free type theory, and belongs to standard definitions of type theory.

[^0]: "John works" \Rightarrow work' $^{\prime}\left(j^{*}\right)$
 "Somebody works" $\Rightarrow \exists x\left(\right.$ work' $\left.^{\prime}(x)\right)$
 "Every student works" $\Rightarrow \forall x\left(\right.$ student ${ }^{\prime}(x) \rightarrow$ work' $\left.^{\prime}(x)\right)$
 "No student works" $\Rightarrow \neg \exists x$ (student' $(x) \wedge$ work' $\left.^{\prime}(x)\right)$
 "John and Mary work" \Rightarrow work' (j^{*}) \wedge work(m^{*})

 - What's the semantic representation of a noun phrase?

