Semantic Theory Semantics Construction

Manfred Pinkal Stefan Thater

Summer 2007

The Principle of Compositionality

- The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and the syntactic rules by which they are combined.
- (The principle is also called "Frege's principle")

3

Outline

- Elementary semantics construction:
 - the "principle of compositionality"
 - compositional semantics construction using type theory
- Quantified noun phrases: A challenge for compositionality
- The lambda operator in type theory

2

Two Levels of Interpretation

- Semantic interpretation is a two-step process
 - Natural language (NL) expressions are assigned a semantic representation (logical formulas).
 - The semantic representation is truth-conditionally interpreted.
- Truth-conditional interpretation of logical representations is strictly compositional.
- We also want this for the process of computing logical representations from NL expressions.

- Basic idea: we start with a syntactic analysis of an NL expression, and
- assign each syntactic node in the syntax tree a semantic representation
- by combining the representations of its daughter nodes.

C(α, C(β, γ))				
NP	V	Р		
C'(α)	C(β	, γ)		
PN	v	NP		
α	β	C'(γ)		
l John	l loves	l PN		
⇒ α	⇒ β	Y		
		l Mary		
		⇒γ		

S

Noun phrases and compositionality

"John works" ⇒ work'(j*)
"Somebody works" ⇒ ∃x(work'(x))
"Every student works" ⇒ ∀x(student'(x) → work'(x))
"No student works" ⇒ ¬∃x(student'(x) ∧ work'(x))
"John and Mary work" ⇒ work'(j*) ∧ work(m*)

• What's the semantic representation of a noun phrase?

Ш

λ×(drive(x) ∧ drink(x)) a term of type (e,t) denotes the property of being "an x such that x drives and drinks" λ-abstraction is an operation that takes an expression and "opens" or "re-opens" specific argument positions by abstracting over a variable The result of abstraction over individual variable x in the formula (drive(x)) + drive(x)

 The result of abstraction over individual variable x in the formula 'drive(x) ∧ drink(x)' results in the complex predicate 'λx(drive(x) ∧ drink(x)).'

14

<section-header><text>

λ -Abstraction: Semantics

- If $\alpha \in WE_{\tau}, \, v \in VAR_{\sigma},$ then
- Notice that of course $f \in D_{(\sigma,\tau)}$.
- In general: [[$(\lambda v \alpha)(\beta)$]]^{M,g} = [[α]]^{M,g[v / [[β]]M,g]}

β -Reduction

- By the modified variable assignment, the value of the argument of the λ-expression is passed through its body and becomes the value of all occurrences of variables bound by the λ-operator.
- We obtain the same result, if we first substitute the free occurrences of the λ -variable in $\lambda v \alpha(\beta)$ by the argument β , and only then interpret the result:
 - [[$\lambda v \alpha(\beta)$]]^{M,g} = [[α]]^{M,g[v/ [[β]]M,g]} to
 - [[$\lambda v \alpha(\beta)$]]^{M,g} = [[[β/v] α]]^{M,g}
- This is the basic idea behind the λ -calculus.

17

Variable capturing

- Are $\lambda v \alpha(\beta)$ and $[\beta/v]\alpha$ always equivalent?
 - λx [drive'(x) ∧ drink'(x)](j*) ⇒ drive'(j*) ∧ drink'(j*)
 - λx [drive'(x) ∧ drink'(x)](y) ⇒ drive'(y) ∧ drink'(y)
 - λx [∀y know'(x)(y)](j*) ⇒ ∀y know(j*)(y)
 - $\lambda x[\forall y \text{ know}'(x)(y)](y) \Rightarrow \forall y \text{ know}(y)(y)$
- Let v, v' be variables of the same type, α any wellformed expression. v is free for v' in α iff no free occurrence of v' in α is in the scope of a quantifier or a λ -operator that binds v.

18

Conversion rules in the λ -calculus

• β -conversion: $\lambda v \alpha(\beta) \Leftrightarrow [\beta/v] \alpha$

if all free variables in β are free for v in α .

• α -conversion: $\lambda v \alpha \Leftrightarrow \lambda v' [v'/v] \alpha$

if v' is free for v in α .

- η -conversion: $\lambda v(\alpha(v)) \Leftrightarrow \alpha$
- The rule which we will use most in semantics construction is β-conversion in the left-to-right direction (β-reduction), which allows us to simplify representations.

	An Exa	ample	
• "John driv	ves and drinks.'	,	
drive' : (e,t) x : e		drink' : (e,t) x : e	_
drive'(x) : t		drink'(x) : t	-
	drive'(x) 🗚	drink'(x) : t	
	λx (drive'(x) Λ drink'(x)) : (e,t)		j* : e
	λx (drive'(x) ۸	drink'(x)) (j*)	
	⇒ _β drive'(j*) ∧	drink'(j*)	

Back to Noun Phrases

- We were looking for a uniform representation for noun phrases:
 - All noun phrases are uniformly represented as terms of type ((e,t),t) i.e., expressions that denote sets of first-order properties P (type (e,t)).
 - Interpretation of "John:" the set of properties P such that John has property P.
 - Interpretation of "every student:" the set of properties P such that every student has P.

21

and so on …

Back to Noun Phrases

- Interpretation of "John:" the set of properties P such that John has property P:
 - λP[P(j*)]
- Interpretation of "every student:" P belongs to the set if every student has property P:
 - $\lambda P[\forall x(student'(x) \rightarrow P(x))]$
- Interpretation of "a student:" P belongs to the set if a student has property P:
 - $\lambda P[\exists x(student'(x) \land P(x))]$

A new problem with adjectives

- We want the best of both worlds:
 - compositional semantics construction
 - explicit and meaningful final semantic representations
- We don't have this yet for intersective adjectives.
- We can get this in two different ways
 - use meaning postulates
 - use more explicit lambda terms

Meaning Postulates

- Characterise the meaning of a predicate that stands for a word (e.g., "blond") by using logical axioms.
- Meaning postulate for intersective adjectives:
 - $\forall P \forall x (blond'(P)(x) \rightarrow P(x))$
- These axioms would be part of our background knowledge.
- For example, we could infer "criminal(john)" from "blond(criminal)(john)" and this axiom.

More explicit lambda terms

- For intersective adjectives, we can also do it by assigning the word a more elaborate lambda term:
 - $\lambda P \lambda x(P(x) \wedge blond'(P)(x))$
- or alternatively as
 - $\lambda P \lambda x (P(x) \wedge blond^*(x))$
 - where "blond*" is a constant of type (e,t) which should denote the set of blond individuals in the universe.

33

• This will beta-reduce to the formula we want.

