
Manfred Pinkal

Stefan Thater

Summer 2007

Semantic Theory

Semantics Construction

Outline

• Elementary semantics construction:

– the “principle of compositionality”

– compositional semantics construction using type

theory

• Quantified noun phrases: A challenge for

compositionality

• The lambda operator in type theory

2

The Principle of Compositionality

• The meaning of a complex expression is uniquely

determined by the meanings of its sub-expressions

and the syntactic rules by which they are combined.

• (The principle is also called “Frege’s principle”)

3

Two Levels of Interpretation

• Semantic interpretation is a two-step process

– Natural language (NL) expressions are assigned a

semantic representation (logical formulas).

– The semantic representation is truth-conditionally

interpreted.

• Truth-conditional interpretation of logical

representations is strictly compositional.

• We also want this for the process of computing

logical representations from NL expressions.

4

• Basic idea: we start with a syntactic

analysis of an NL expression, and

• assign each syntactic node in the

syntax tree a semantic representation

• by combining the representations of

its daughter nodes.

Compositional Semantics

Construction

5

NP

C’(!)

S

C(!, C(", #))

VP

C(", #)

V

"

NP

C’(#)

PN

!

loves

$ "

John

$!

PN

#

Mary

$ #

Basic Rules

• Rule of functional application

B $ % : !&,'"# # # B $ % : &

C $ (: &# # or# # C $ (: !&,'"

A $ %(() : '# # # A $ ((%) : '

• Rule for non-branching nodes

B $ % : '

A $ % : '

6

B

A

C

B

A

Basic Rules

• Rule of functional application

A $ % : '

• The semantic representation % for a word w is

supplied by the lexicon.

7

w

A

An Example

8

NP

S

VP

V NPPN

lovesJohn
PN

Mary

m* : e

m* : elove’ : !e,!e,t""

love(m*) : !e,t"

love(m*)(j*) : t

j* : e

j* : e

m* : e

love’ : !e,!e,t"" m* : ej* : e

j* : e love(m*) : !e,t"

love(m*)(j*) : t

Noun phrases and compositionality

 Every student presents a paper

)x(student’(x) * +y(paper’(y) , present’(y)(x))

9

Noun phrases and compositionality

 Every student presents a paper

)x(student’(x) * +y(book’(y) , present’(y)(x))

10

11

“John works”# $ work’(j*)

“Somebody works”# $ +x(work’(x))

#“Every student works”# $)x(student’(x) * work’(x))

“No student works”# $ ¬+x(student’(x) , work’(x))

“John and Mary work”# $ work’(j*) , work(m*)

• What’s the semantic representation of a noun

phrase?

Noun phrases and compositionality

12

• “John works.”

j* : e # # work’ : !e,t"

work’(j*) : t

• “Every student works.”

every-student’ : !!e,t",t"# work’ : !e,t"

every-student’(work’) : t #

Towards a unified semantics of NPs

13

• “John works.”

john’ : !!e,t",t" # work’ : !e,t"

john’(work’) : t

• “Every student works.”

every-student’ : !!e,t",t"# work’ : !e,t"

every-student’(work’) : t #

Towards a unified semantics of NPs --Abstraction

• -x(drive(x) , drink(x))

– a term of type !e,t"

– denotes the property of being “an x such that x

drives and drinks”

• --abstraction is an operation that takes an

expression and “opens” or “re-opens” specific

argument positions by abstracting over a variable

• The result of abstraction over individual variable x in

the formula ‘drive(x) , drink(x)’ results in the

complex predicate ‘-x(drive(x) , drink(x)).’

14

-x(drive’(x) , drink’(x))

15

V(drink’)

V(drive’)

[[-x(drive’(x) , drink’(x))]] denotes the

(characteristic function of the) set of elements

which make drive’(x) , drink’(x) true

--Abstraction: Semantics

• If . / WE', v / VAR&, then

– [[-v.]]M,g is that function f : D& * D' such that for

all a / D&, f(a) = [[.]]M,g[v/a]

• Notice that of course f / D!&,'".

• In general: [[(-v.)(%)]]M,g = [[.]]M,g[v / [[%]]M,g]

16

%-Reduction

17

• By the modified variable assignment, the value of

the argument of the --expression is passed through

its body and becomes the value of all occurrences of

variables bound by the --operator.

• We obtain the same result, if we first substitute the

free occurrences of the --variable in -v.(%) by the

argument %, and only then interpret the result:

– [[-v.(%)]]M,g = [[.]]M,g[v/ [[%]]M,g] to

– [[-v.(%)]]M,g = [[[%/v].]]M,g

• This is the basic idea behind the --calculus.

Variable capturing

• Are -v.(%) and [%/v]. always equivalent?

– -x[drive’(x) , drink’(x)](j*) $ drive’(j*) , drink’(j*)

– -x[drive’(x) , drink’(x)](y) $ drive’(y) , drink’(y)

– -x[)y know’(x)(y)](j*) $)y know(j*)(y)

– -x[)y know’(x)(y)](y) \$)y know(y)(y)

• Let v, v’ be variables of the same type, . any well-

formed expression. v is free for v’ in . iff no free

occurrence of v’ in . is in the scope of a quantifier or

a --operator that binds v.

18

Conversion rules in the --calculus

• %-conversion: -v.(%) 0 [%/v].

if all free variables in % are free for v in ..

• .-conversion: -v. 0 -v’[v’/v].

if v’ is free for v in ..

• 1-conversion: -v(.(v)) 0 .

• The rule which we will use most in semantics

construction is %-conversion in the left-to-right

direction (%-reduction), which allows us to simplify

representations.

19

An Example

• “John drives and drinks.”

drive’ : !e,t"# x : e# # drink’ : !e,t"# x : e

drive’(x) : t # # # # drink’(x) : t

drive’(x) , drink’(x) : t

-x (drive’(x) , drink’(x)) : !e,t"# # j* : e

-x (drive’(x) , drink’(x)) (j*)

$% drive’(j*) , drink’(j*)

20

Back to Noun Phrases

• We were looking for a uniform representation for

noun phrases:

– All noun phrases are uniformly represented as

terms of type !!e,t",t" i.e., expressions that denote

sets of first-order properties P (type !e,t").

– Interpretation of “John:” the set of properties P

such that John has property P.

– Interpretation of “every student:” the set of

properties P such that every student has P.

– and so on …

21

Back to Noun Phrases

• Interpretation of “John:” the set of properties P such

that John has property P:

– -P[P(j*)]

• Interpretation of “every student:” P belongs to the

set if every student has property P:

– -P[)x(student’(x) * P(x))]

• Interpretation of “a student:” P belongs to the set if

a student has property P:

– -P[+x(student’(x) , P(x))]

22

More Noun Phrases

John # $ -G[G(j*)]

Somebody # $ -G +xG(x)

A student # $ -G +x(student(x) , G(x))

No student # $ -G ¬+x(student(x) , G(x))

John # $ -G[G(j*)]

John and Mary # $ -G[G(j*) , G(m*)]

23

“John sleeps”

24

-P[P(j*)] : !!e,t",t" sleep’ : !e,t"

-P[P(j*)] : !!e,t",t" sleep’ : !e,t"

-P[P(j*)](sleep’) : t

$% sleep’(j*) : t

NP

S

VP

V

sleeps

N

John

“Every student works”

25

work’ : !e,t"

-P)x(student’(x) * P(x)) : !!e,t",t" work’ : !e,t"

-P)x(student’(x) * P(x))(work’) : t

$%)x(student’(x) * work’(x)) : t

NP

S

VP

V

works

Every student

Determiners

a, some# $ -F-G +x(F(x) , G(x))

every # $ -F-G)x(F(x) * G(x))

no# $ -F-G ¬+x(F(x) , G(x))

most # $ most’# # # (a constant)

26

“Every student works.”

27

student’ : !e,t" work’ : !e,t"

-F-G)x(F(x) * G(x))(student’) : !!e,t",t" work’ : !e,t"

-G)x(student’(x) * G(x))(work’) : t

$%)x(student’(x) * work’(x)) : t

$% -G)x(student’(x) * G(x)) : !!e,t",t"

-F-G)x(F(x) * G(x)) : !!e,t",!!e,t",t""

NP

S

VP

VDet

worksEvery

N

student

Back to Adjectives

28

• “John is a blond criminal”

– criminal’(j*) , blond’(j*)

• “John is a famous criminal”

– criminal’(j*) , famous’(j*) ?

• “John is an alleged criminal”

- criminal’(j*) , alleged’(j*) ???

“John is a blond criminal.”

29

NP
!P[P(j*)]

S
!P[P(j*)](blond’(criminal')) : t

" blond’(criminal')(j*) : t

VP
(!R R)(blond’(criminal')) : #e,t$

" blond’(criminal') : #e,t$

V
!R R : ##e,t$,#e,t$$

is-a

John

Adj
blond’ : ##e,t$,#e,t$$

blond

N
criminal’ : #e,t$

criminal

N
blond’(criminal') : #e,t$

Adjective Classes

30

• Adjectives can be classified with respect to the way

they combine the adjective and noun meanings:

– intersective adjectives (blond, carnivorous, ...):

[[blond N]] = [[blond]] 2 [[N]]

– subsective adjectives (skillful, typical, ...):

[[skillful N]] 3 [[N]]

– privative adjectives (past, fake, ...):

[[past N]] 2 [[N]] = 4

– there are also other non-subsective adjectives

that are not privative (alleged, ...)

A new problem with adjectives

• We want the best of both worlds:

– compositional semantics construction

– explicit and meaningful final semantic

representations

• We don’t have this yet for intersective adjectives.

• We can get this in two different ways

– use meaning postulates

– use more explicit lambda terms

31

Meaning Postulates

• Characterise the meaning of a predicate that stands

for a word (e.g., “blond”) by using logical axioms.

• Meaning postulate for intersective adjectives:

–)P)x(blond’(P)(x) * P(x))

• These axioms would be part of our background

knowledge.

• For example, we could infer “criminal(john)” from

“blond(criminal)(john)” and this axiom.

32

More explicit lambda terms

• For intersective adjectives, we can also do it by

assigning the word a more elaborate lambda term:

– -P-x(P(x) , blond’(P)(x))

• or alternatively as

– -P-x(P(x) , blond*(x))

– where “blond*” is a constant of type !e,t" which

should denote the set of blond individuals in the

universe.

• This will beta-reduce to the formula we want.

33

Transitive Verbs

• A composition problem:

every student # $ -F)x(student’(x) * F(x)) : !!e,t",t"

a paper # $ -G +y(paper(y) , G(y)) : !!e,t",t"

presented # $ present: !e,!e,t""

34

V
present’ : !e,!e,t""

presented

NP
#G $y(paper'(y) % G(y)) : !!e,t",t"

a paper

VP
????

The solution: Type-Raising

• Raise the type of the first-order relation:

– present: !!!e,t",t",!e,t""

35

V
present’ : !!!e,t",t",!e,t""

presented

NP
#G $y(paper'(y) % G(y)) : !!e,t",t"

a paper

VP
present’(#G $y(paper'(y) % G(y))) : !e,t"

Transitive Verbs

• But now our semantic representation no longer beta-

reduces to a FOL formula:

–)x[student(x) * present(-G+y paper(y) ,G(y))(x)]

• Same problem as with intersective adjectives, same

solution.

• Represent transitive verbs like “present” as follows:

– -Q-x[Q(-y[present*(y)(x)])]: !!!e,t",t",!e,t"",

– where present*: !e,!e,t""

36

“… presented a paper”

• a paper $ -G+z(paper’(z) , G(z))

• presented $ -Q-x[Q(-y[present*(y)(x)])]

• presented a paper

$ -Q-x[Q(-y[present*(y)(x)])](-G+z(paper’(z) , G(z)))

$ -x[-G+z(paper’(z) , G(z))(-y[present*(y)(x)])]

$ -x[+z(paper’(z) , -y[present*(y)(x)](z)]

$ -x[+z(paper’(z) , present*(z)(x)]

37

Conclusion

• Semantics construction is not so easy for nontrivial

sentences.

• With lambda-abstraction and application, these

sentences can be treated in a straightforward way.

• Lambda abstraction is a very natural and

straightforward extension to lambda-free type

theory, and belongs to standard definitions of type

theory.

38

