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Semantic Theory

Semantics Construction

Outline

• Elementary semantics construction:

– the “principle of compositionality”

– compositional semantics construction using type 

theory

• Quantified noun phrases: A challenge for 

compositionality

• The lambda operator in type theory
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The Principle of Compositionality

• The meaning of a complex expression is uniquely 

determined by the meanings of its  sub-expressions 

and the syntactic rules by which they are combined.

• (The principle is also called “Frege’s principle”)
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Two Levels of Interpretation

• Semantic interpretation is a two-step process

– Natural language (NL) expressions are assigned a 

semantic representation (logical formulas).

– The semantic representation is truth-conditionally 

interpreted.

• Truth-conditional interpretation of logical 

representations is strictly compositional.

• We also want this for the process of computing 

logical representations from NL expressions.
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• Basic idea: we start with a syntactic 

analysis of an NL expression, and 

• assign each syntactic node in the 

syntax tree a semantic representation

• by combining the representations of 

its daughter nodes.

Compositional Semantics 

Construction
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Basic Rules

• Rule of functional application

# B $ % : !&,'"# # # B $ % : &

# C $ ( : &# #  or# # C $ ( : !&,'"

# A $ %(() : '# # # A $ ((%) : '

• Rule for non-branching nodes

# B $ % : '

# A $ % : '
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Basic Rules

• Rule of functional application

 

# A $ % : '

• The semantic representation % for a word w is  

supplied by the lexicon. 
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An Example
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m* : e

m* : elove’ : !e,!e,t""

love(m*) : !e,t"

love(m*)(j*) : t

j* : e

j* : e

m* : e

love’ : !e,!e,t"" m* : ej* : e

j* : e love(m*) : !e,t"

love(m*)(j*) : t



Noun phrases and compositionality

   Every student presents a paper

)x(student’(x) * +y(paper’(y) , present’(y)(x))
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Noun phrases and compositionality

   Every student presents a paper

)x(student’(x) * +y(book’(y) , present’(y)(x)) 
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# “John works”# $ work’(j*)

# “Somebody works”# $ +x(work’(x))

#“Every student works”# $ )x(student’(x) * work’(x))

# “No student works”# $ ¬+x(student’(x) , work’(x))

# “John and Mary work”# $ work’(j*) , work(m*)

• What’s the semantic representation of a noun 

phrase?

Noun phrases and compositionality
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• “John works.”

# # j* : e # # work’ : !e,t"

# # # work’(j*) : t

• “Every student works.”

# # every-student’ : !!e,t",t"# work’ : !e,t"

# # # # every-student’(work’) : t # #

Towards a unified semantics of NPs
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• “John works.”

# # john’ : !!e,t",t" # work’ : !e,t"

# # # john’(work’) : t

• “Every student works.”

# # every-student’ : !!e,t",t"# work’ : !e,t"

# # # # every-student’(work’) : t # #

Towards a unified semantics of NPs --Abstraction

• -x(drive(x) , drink(x))

– a term of type !e,t"

– denotes the property of being “an x such that x 

drives and drinks”

• --abstraction is an operation that takes an 

expression and “opens” or “re-opens” specific 

argument positions by abstracting over a variable

• The result of abstraction over individual variable x in 

the formula ‘drive(x) , drink(x)’ results in the 

complex predicate ‘-x(drive(x) , drink(x)).’ 
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-x(drive’(x) , drink’(x))
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V(drink’)

V(drive’)

[[ -x(drive’(x) , drink’(x)) ]] denotes  the 

(characteristic function of the) set of elements 

which make drive’(x) , drink’(x) true

--Abstraction: Semantics

• If . / WE', v / VAR&, then

– [[ -v. ]]M,g is that function f : D& * D' such that for 

all a / D&, f(a) = [[ . ]]M,g[v/a]

• Notice that of course f / D!&,'".

• In general: [[ (-v.)(%) ]]M,g = [[ . ]]M,g[v / [[ % ]]M,g] 
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%-Reduction
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• By the modified variable assignment, the value of 

the argument of the --expression is passed through 

its body and becomes the value of all occurrences of 

variables bound by the --operator.

• We obtain the same result, if we first substitute the 

free occurrences of the --variable in -v.(%) by the 

argument %, and only then interpret the result:

– [[ -v.(%) ]]M,g = [[ . ]]M,g[v/ [[%]]M,g] to

– [[ -v.(%) ]]M,g = [[ [%/v]. ]]M,g

• This is the basic idea behind the --calculus.

Variable capturing

• Are -v.(%) and [%/v]. always equivalent?

– -x[drive’(x) , drink’(x)](j*) $ drive’(j*) , drink’(j*) 

– -x[drive’(x) , drink’(x)](y) $ drive’(y) , drink’(y)

– -x[)y know’(x)(y)](j*) $ )y know(j*)(y)

– -x[)y know’(x)(y)](y) \$ )y know(y)(y)

• Let v, v’ be variables of the same type, . any well-

formed expression. v is free for v’ in . iff no free 

occurrence of v’ in . is in the scope of a quantifier or 

a --operator that binds v. 
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Conversion rules in the --calculus

• %-conversion: -v.(%) 0 [%/v].

# if all free variables in % are free for v in ..

• .-conversion: -v. 0 -v’[v’/v].

# if v’ is free for v in ..

• 1-conversion: -v(.(v)) 0 . 

• The rule which we will use most in semantics 

construction is %-conversion in the left-to-right 

direction (%-reduction), which allows us to simplify 

representations.
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An Example

• “John drives and drinks.”

# # drive’ : !e,t"# x : e# # drink’ : !e,t"# x : e

# # # drive’(x) : t # # # # drink’(x) : t

# # # # # drive’(x) , drink’(x) : t

# # # # -x (drive’(x) , drink’(x)) : !e,t"# # j* : e

# # # # -x (drive’(x) , drink’(x)) (j*)

# # # # $% drive’(j*) , drink’(j*)

     

20



Back to Noun Phrases

• We were looking for a uniform representation for 

noun phrases:

– All noun phrases are uniformly represented as 

terms of type !!e,t",t" i.e., expressions that denote 

sets of first-order properties P (type !e,t").

– Interpretation of “John:” the set of properties P 

such that John has property P.

– Interpretation of “every student:” the set of 

properties P such that every student has P.

– and so on …
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Back to Noun Phrases

• Interpretation of “John:” the set of properties P such 

that John has property P:

– -P[P(j*)]

• Interpretation of “every student:” P belongs to the 

set if every student has property P:

– -P[)x(student’(x) * P(x))]

• Interpretation of “a student:” P belongs to the set if 

a student has property P:

– -P[+x(student’(x) , P(x))]
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More Noun Phrases

# John # $ -G[G(j*)] 

# Somebody # $ -G +xG(x)

# A student # $ -G +x(student(x) , G(x)) 

# No student # $ -G ¬+x(student(x) , G(x)) 

# John # $ -G[G(j*)] 

# John and Mary # $ -G[G(j*) , G(m*)]
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“John sleeps”
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-P[P(j*)] : !!e,t",t" sleep’ : !e,t"

-P[P(j*)] : !!e,t",t" sleep’ : !e,t"

-P[P(j*)](sleep’) : t

$% sleep’(j*) : t

NP

S

VP

V

sleeps

N

John



“Every student works”
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work’ : !e,t"

-P )x(student’(x) * P(x)) : !!e,t",t" work’ : !e,t"

-P )x(student’(x) * P(x))(work’) : t

$% )x(student’(x) * work’(x)) : t

NP

S

VP

V

works

Every student

Determiners

# a, some# $ -F-G +x(F(x) , G(x))

# every # $ -F-G )x(F(x) * G(x))

# no# $ -F-G ¬+x(F(x) , G(x)) 

# most # $ most’# # # (a constant) 
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“Every student works.”
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student’ : !e,t" work’ : !e,t"

-F-G )x(F(x) * G(x))(student’) : !!e,t",t" work’ : !e,t"

-G )x(student’(x) * G(x))(work’) : t

$% )x(student’(x) * work’(x)) : t

$% -G )x(student’(x) * G(x)) : !!e,t",t"

-F-G )x(F(x) * G(x)) : !!e,t",!!e,t",t""

NP

S

VP

VDet

worksEvery

N

student

Back to Adjectives
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• “John is a blond criminal”

– criminal’(j*) , blond’(j*)

• “John is a famous criminal”

– criminal’(j*) , famous’(j*)  ?

• “John is an alleged criminal”

- criminal’(j*) , alleged’(j*)  ???



“John is a blond criminal.”
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NP
!P[P(j*)]

S
!P[P(j*)](blond’(criminal')) :  t

" blond’(criminal')(j*) : t

VP
(!R R)(blond’(criminal')) : #e,t$

" blond’(criminal') : #e,t$

V
!R R : ##e,t$,#e,t$$

is-a

John

Adj
blond’ : ##e,t$,#e,t$$

blond

N
criminal’ : #e,t$

criminal

N
blond’(criminal') : #e,t$

Adjective Classes
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• Adjectives can be classified with respect to the way 

they combine the adjective and noun meanings:

– intersective adjectives (blond, carnivorous, ...):

[[ blond N ]] = [[ blond ]] 2 [[ N ]]

– subsective adjectives (skillful, typical, ...):

[[ skillful N ]] 3 [[ N ]]

– privative adjectives (past, fake, ...): 

[[ past N ]] 2 [[ N ]] = 4

– there are also other non-subsective adjectives 

that  are not privative (alleged, ...)

A new problem with adjectives

• We want the best of both worlds:

– compositional semantics construction

– explicit and meaningful final semantic 

representations

• We don’t have this yet for intersective adjectives.

• We can get this in two different ways

– use meaning postulates

– use more explicit lambda terms 
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Meaning Postulates

• Characterise the meaning of a predicate that stands 

for a word (e.g., “blond”) by using logical axioms.

• Meaning postulate for intersective adjectives:

– )P)x(blond’(P)(x) * P(x))

• These axioms would be part of our background  

knowledge. 

• For example, we could infer “criminal(john)” from  

“blond(criminal)(john)” and this axiom.
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More explicit lambda terms 

• For intersective adjectives, we can also do it by 

assigning the word a more elaborate lambda term:

– -P-x(P(x) , blond’(P)(x))

• or alternatively as

– -P-x(P(x) , blond*(x))

– where “blond*” is a constant of type !e,t" which 

should denote the set of blond individuals in the 

universe.

• This will beta-reduce to the formula we want.
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Transitive Verbs

• A composition problem:

# every student # $ -F )x(student’(x) * F(x)) : !!e,t",t"

# a paper # $ -G +y(paper(y) , G(y)) : !!e,t",t"

# presented # $ present: !e,!e,t"" 
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V
present’ : !e,!e,t""

presented

NP
#G $y(paper'(y) % G(y)) : !!e,t",t"

a paper

VP
????

The solution: Type-Raising

• Raise the type of the first-order relation:

– present: !!!e,t",t",!e,t""
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V
present’ : !!!e,t",t",!e,t""

presented

NP
#G $y(paper'(y) % G(y)) : !!e,t",t"

a paper

VP
present’(#G $y(paper'(y) % G(y))) : !e,t"

Transitive Verbs

• But now our semantic representation no longer beta-

reduces to a FOL formula:

– )x[student(x) * present(-G+y paper(y) ,G(y))(x)]

• Same problem as with intersective adjectives, same 

solution.

• Represent transitive verbs like “present” as follows:

– -Q-x[Q(-y[present*(y)(x)])]: !!!e,t",t",!e,t"", 

– where present*: !e,!e,t"" 
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“… presented a paper”

• a paper $ -G+z(paper’(z) , G(z))

• presented $ -Q-x[Q(-y[present*(y)(x)])]

• presented a paper 

$ -Q-x[Q(-y[present*(y)(x)])](-G+z(paper’(z) , G(z)))

$ -x[-G+z(paper’(z) , G(z))(-y[present*(y)(x)])]

$ -x[+z(paper’(z) , -y[present*(y)(x)](z)]

$ -x[+z(paper’(z) , present*(z)(x)]
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Conclusion

• Semantics construction is not so easy for nontrivial 

sentences.

• With lambda-abstraction and application, these 

sentences can be treated in a straightforward way.

• Lambda abstraction is a very natural and 

straightforward extension to lambda-free type 

theory, and belongs to standard definitions of type 

theory.
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