Semantic Theory
Semantics Construction

Manfred Pinkal
Stefan Thater

Summer 2007

Outline

Elementary semantics construction:

- the “principle of compositionality”

- compositional semantics construction using type
theory

Quantified noun phrases: A challenge for

compositionality

The lambda operator in type theory

The Principle of Compositionality

e The meaning of a complex expression is uniquely
determined by the meanings of its sub-expressions

and the syntactic rules by which they are combined.

e (The principle is also called “Frege’s principle”)

Two Levels of Interpretation

Semantic interpretation is a two-step process

- Natural language (NL) expressions are assigned a
semantic representation (logical formulas).

- The semantic representation is truth-conditionally
interpreted.

Truth-conditional interpretation of logical

representations is strictly compositional.

We also want this for the process of computing
logical representations from NL expressions.

Compositional Semantics
Construction

Basic Rules

e Rule of functional application

B=B: (o071 B=B:0o
C=vy:o0 or C=vy:{(oT1
A=B(y): T A=vy(p):T

e Rule for non-branching nodes

e Basic idea: we start with a syntactic S
analysis of an NL expression, and C(o, C(B, V)
e assign each syntactic node in the NP VP
syntax tree a semantic representation €' () C(B,v)
e by combining the representations of PN \Y NP
its daughter nodes. (Ix l|3 C':V)
John loves PN
=q =B %
|
Mary
=y
5
Basic Rules

e Rule of functional application
A=B:T

e The semantic representation B for a word w is
supplied by the lexicon.

B=B:T
A=>B:T
6
An Example
S
love(m*)(j*) : t
/\
NP VP
e love(m*) : (e,t)
I /\
PN \% NP
j*:e love’ : (e,(e,t)) m*: e
| | o
John loves ..
m*: e

Mary

Noun phrases and compositionality

Every student presents a paper

72X

Vx(student’(x) — Ay(paper’'(y) A present’(y)(x))

Noun phrases and compositionality

Every student presents a paper

Vx(student’(x) — Jy(book’(y) A present’(y)(x))

Noun phrases and compositionality

“John works” = work’(j*)
“Somebody works” = Ix(work’(x))
“Every student works” = Vx(student’(x) — work’(x))
“No student works” = —3x(student’(x) A work’(x))

“John and Mary work” = work’(j*) A work(m*)

e \What's the semantic representation of a noun
phrase?

Towards a unified semantics of NPs

e “John works.”
*:e work’ : (e,t)
work’(j*) : t

e “Every student works.”

every-student’ : ((e,t),t) work’: (e,t)

every-student’(work’) : t

Towards a unified semantics of NPs

e “John works.”
john’ : {{e,t),t) work’: (e,t)
john'(work’) : t

e “Every student works.”
every-student’ : ((e,t),t) work’: (e,t)

every-student’(work’) : t

A-Abstraction

Ax(drive(x) A drink(x))

- aterm of type (e,t)
- denotes the property of being “an x such that x
drives and drinks”

A-abstraction is an operation that takes an
expression and “opens” or “re-opens” specific
argument positions by abstracting over a variable
The result of abstraction over individual variable x in
the formula ‘drive(x) A drink(x)’ results in the
complex predicate ‘Ax(drive(x) A drink(x)).’

Ax(drive’(x) A drink’(x))

V(drive')

/

V(drink’) [Ax(drive’(x) A drink’(x))]l denotes the
(characteristic function of the) set of elements
which make drive’(x) A drink’(x) true

15

A-Abstraction: Semantics

If a € WE+, v € VARg, then

- [[Ava]9 is that function f : Dg — D+ such that for
alla € D, f(a) = [a JMelv/al

Notice that of course f € Do,1).
In general: [[(Ava)(B) M9 = [[o JIM-9lv/ LB IM.g]

B-Reduction

e By the modified variable assignment, the value of
the argument of the A-expression is passed through
its body and becomes the value of all occurrences of
variables bound by the A-operator.

e We obtain the same result, if we first substitute the
free occurrences of the A-variable in Ava(B) by the
argument 3, and only then interpret the result:

- [Ava(B) M9 = [o MoV LBIMa] to
= [[Ava(B) ™9 = [[[B/v]a IIM9

e This is the basic idea behind the A-calculus.

Variable capturing

e Are Ava(B) and [B/v]a always equivalent?
- Ax[drive’(x) A drink’(x)1(j*) = drive’(j*) A drink’(j*)
— Ax[drive’(x) A drink’(x)](y) = drive'(y) A drink’(y)
= AX[Vy know’(x)(y)1(j*) = Yy know(j*)(y)
= AX[Vy know’(x)(y)1(y) & Vy know(y)(y)
e Let v, v’ be variables of the same type, a any well-
formed expression. v is free for v’ in a iff no free

occurrence of v’ in a is in the scope of a quantifier or
a A-operator that binds v.

Conversion rules in the A-calculus

e B-conversion: Ava(B) e [B/v]a

if all free variables in B are free for v in a.
e o-conversion: Ava & AV'[V'/v]a

if v’ is free for v in a.
e n-conversion: Av(a(v)) & a

e The rule which we will use most in semantics
construction is B-conversion in the left-to-right
direction (B-reduction), which allows us to simplify
representations.

An Example

e “John drives and drinks.”
drive’ : (e,t) x: e drink’ : (e,t) x: e
drive'(x) : t drink’(x) : t

drive’(x) A drink’(x) : t
AX (drive’(x) A drink’(x)) : (e,t) e
AX (drive’(x) A drink’(x)) (j*)

=g drive’(j*) A drink’(j*)

20

Back to Noun Phrases Back to Noun Phrases
We were looking for a uniform representation for e Interpretation of “John:” the set of properties P such
noun phrases: that John has property P:
- All noun phrases are uniformly represented as = APIP(j*)]
terms of type ({e,t),t) i.e., expressions that denote e Interpretation of “every student:” P belongs to the
sets of first-order properties P (type (e,t)). set if every student has property P:
- Interpretation of “John:” the set of properties P — AP[Vx(student’(x) — P(x))]

such that John has property P.
J property e Interpretation of “a student:” P belongs to the set if

a student has property P:
- AP[3x(student’(x) A P(x))]

Interpretation of “every student:” the set of
properties P such that every student has P.

- andsoon...
More Noun Phrases “John sleeps”
John = AGIG(j*)] S

AP[P(j*)1(sleep’) : t

Somebody = AG IxG(x) =g sleep’(j*) : t

A student = AG 3Ix(student(x) A G(x))

No student = AG —3Ix(student(x) A G(x)) NP VP
John = AGIG(j*)] AP[P(j*)] : ({e,t),t) sleep’ : (e,t)
John and Mary = AG[G(j*) A G(m*)] | |
N Vv
AP[P(j*)] : ({e,t),t) sleep’ : (e,t)
John sleeps

23 24

“Every student works”

S
AP Vx(student’'(x) — P(x))(work’) : t
=p Vx(student’(x) — work’(x)) : t

NP VP
AP Vx(student’'(x) — P(x)) : {(e,t),t) work’ : {e,t)
AN y
Every student work’ : (e,t)
works

25

Determiners

a, some = AFAG Ix(F(x) A G(x))
every = AFAG Vx(F(x) — G(x))
no = AFAG —3x(F(x) A G(x))
most = most’ (a constant)

26

“Every student works.”

S
AG Vx(student’(x) — G(x))(work’) : t
=p Vx(student’(x) — work’(x)) : t

/\

NP VP
AFAG Vx(F(x) — G(x))(student’) : {{e,t),t) work’ : (e,t)

=g AG Vx(student’(x) — G(x)) : {{e,t),t)
Det N V
AFAG VX(F(x) — G(x)) : ({e,t),{{e,t),t)) student’ : (e,t) work’ : (e,t)

Every student works

27

Back to Adjectives

e “John is a blond criminal”

- criminal’(j*) A blond’(j*)
e “John is a famous criminal”

- criminal’(j*) A famous’(j*) ?
e “John is an alleged criminal”

— criminal’(j*) A alleged’(j*) 777

28

“John is a blond criminal.” Adjective Classes
_ S o e Adjectives can be classified with respect to the way
APIP(7)](blond"(criminal’)) : t they combine the adjective and noun meanings:

= blond’(criminal')(j*) : t

/’\ - intersective adjectives (blond, carnivorous, ...):

NP VP [blondNT=[blondlInl[NT
APP(j*)] (AR R)(blond’(criminal")) : {e,t) _ . N . . .
— blond'(criminal’) : {e,t) subs.ectlve adjectives (skillful, typical, ...):
/-\ [skillfulNT<INTI
John \% N - privative adjectives (past, fake, ...):
AR R: ((e,t),(e,t) blond’(criminal’) : (e,t) MlpastNIIn[IN] =0

I /\ - there are also other non-subsective adjectives

is-a Adj N R
blond : ((e.t)(et)) criminal’: (e.6 that are not privative (alleged, ...)
I I
blond criminal
29 30
A new problem with adjectives Meaning Postulates
e We want the best of both worlds: e Characterise the meaning of a predicate that stands

- compositional semantics construction for a word (e.g., “blond”) by using logical axioms.

- explicit and meaningful final semantic e Meaning postulate for intersective adjectives:
representations - VPVx(blond’(P)(x) — P(x))
e We don’t have this yet for intersective adjectives. e These axioms would be part of our background
e We can get this in two different ways knowledge.
- use meaning postulates e For example, we could infer “criminal(john)” from

- use more explicit lambda terms “blond(criminal)(john)” and this axiom.

31 32

More explicit lambda terms

e For intersective adjectives, we can also do it by
assigning the word a more elaborate lambda term:
- APAX(P(x) A blond’(P)(x))
e or alternatively as
= APAX(P(x) A blond*(x))
- where “blond*” is a constant of type (e,t) which
should denote the set of blond individuals in the
universe.

e This will beta-reduce to the formula we want.

33

Transitive Verbs

e A composition problem: VP
777?
/\
\ NP

present’ : (e,{e,t)) AG Jy(paper'(y) A G(y)) : {{(e,t),t)

! =

presented
a paper

every student = AF Vx(student’(x) — F(x)) : {{e,t),t)
a paper = AG y(paper(y) A G(y)) : ({e,b),t)
presented = present: (e,{e,t))

The solution: Type-Raising

e Raise the type of the first-order relation:

- present: ({{e,t),t),(e,t))

VP
present’(AG Jy(paper'(y) A G(y))) : (e,t)

/\

\% NP
present’ : ({{(e,t),t),(e,t)) AG Jy(paper'(y) A G(y)) : {{e,t),t)

| =~

presented
a paper

35

Transitive Verbs

e But now our semantic representation no longer beta-
reduces to a FOL formula:

- Vx[student(x) — present(AG3y paper(y) AG(y))(x)]

e Same problem as with intersective adjectives, same
solution.

e Represent transitive verbs like “present” as follows:
- AQAX[Q(Ay[present*(y)(x)])]: {{{e,t).t),(e,t}),
- where present*: (e,(e,t))

“... presented a paper” Conclusion

e a paper = AG3Iz(paper'(z) A G(z)) e Semantics construction is not so easy for nontrivial

e presented = AQAx[Q(Ay[present*(y)(x)])] sentences.

e With lambda-abstraction and application, these

e presented a paper
sentences can be treated in a straightforward way.

= AQAx[Q(Ay[present*(y)(x)])1(AGIz(paper'(z) A G(2))) o
= AX[AG3z(paper'(z) A G(2))(\y[present*(y)(x)])] . L?mbiztafabstrzctlotn is a vetrylnatkt)j(;alﬁnd .
, straightforward extension to lambda-free type
= Ax[3z(paper’(z) A Ay[present*(y)(x)](z)]
- bap P Y theory, and belongs to standard definitions of type

Ax[3Jz(paper’'(z) A present*(z)(x)] theory.

37 38

