Semantic Theory

Type Theory

Manfred Pinkal
Stefan Thater

Summer 2007

Logic as a framework for NL
semantics

Approximate NL meaning as truth conditions.

Logic supports precise, consistent and controlled
meaning representation via truth-conditional
interpretation.

Logic provides deduction systems to model
inference processes, controlled through a formal
entailment concept.

Logic supports uniform modelling of the semantic
composition process.

Outline

A reminder: First-order predicate logic (FOL).

The limits of FOL as a formalism for semantic
representations.

Type theory

Syntax of FOL [1]

Non-logical expressions:

- Individual constants: CON = { j*, b*, ... }

- n-place relation constants: REL", foralln = 0
Individual variables: VAR = { x, vy, z, ... }
Terms: TERM = VAR u CON

Atomic formulas:

- R(ty,..., tn) for R € REL" and t3, ..., th € TERM
- s=tfors, t € TERM

Syntax of FOL [2]

e FOL formulas: The smallest set FORM such that

- all atomic formulas are in FORM

- if @, y are in FORM, then =@, (¢ A y), (¢ V y),
(¢ — y), (¢ — y) are in FORM

- if x is individual variable, and ¢ is in FORM, then
Vx¢ and 3x¢@ are in FORM

Scope

If Vx@ (Ix@) is a subformula of y, then we call ¢ the
scope of this occurrence of ¥Vx (3x) in y.

- We distinguish distinct occurrences of quantifiers
as there are formulae like YxA(x) A VxB(x).

An example:
- Ix(Vy(T(y) = x=y) A F(x))

Free and Bound Variables

e An occurrence of a variable x in a formula ¢ is said
to be free in ¢ if this occurrence of x does not fall
within the scope of a quantifier Vx or ax in @.

o If Vxy (or Axy) is a subformula of ¢ and x is free in y,
then this occurrence of x is said to be bound by this
occurrence of the quantifier Vx (or 3x).

- Vx (A(x) A B(x))
- Vx A(x) A B(x)
e A sentence is a formula without free variables.

Notational Variants

We usually omit outermost brackets

- A A Binstead of (A A B)

We usually omit brackets if no ambiguities can arise
- AAB A Cinstead of (A A (B AC))

We sometimes omit brackets for atomic formulas:

- Rxy instead of R(x,y)

Alternative notation for quantifiers

- 3x . A(x) A B(x) instead of Ix(A(x) A B(x))

Semantics of FOL [1]

e Model structure for FOL: M = (Um, V)
- Uwm is non-empty universe (individual domain)
- Vwm is an interpretation function, which assigns
- individuals (€Uw) to individual constants and
- n-ary relations between individuals (€Uwv") to n-
place predicate symbols.

e Assignment function for variables g: VAR — Um

Semantics of FOL [2]

e Interpretation of terms with respect to model
structure M and variable assignment g:

- [[a™9 = Vm(a), if a is an individual constant
- [alM9 = g(a), if a is a variable

Semantics of FOL [3]

e |nterpretation of formulas with respect to model
structure M and variable assignment g:

ff (Lt ™9, ..., [tn IM9) € VM(R)

[R(t1, ..., ta) Mo =1

[s=tl"e=1 iff [s™o=[t]"o
[-eIMo=1 iff [¢M9=0
fonwl"o=1iff [o]"9=1and[y]"9=1
fovylMo=1iff [¢"9=T1or[y["o=1
fo—-yl"e=1iff [¢]"9=0o0r[[y]"o=1

fo—yMo=1 iff [¢["o=[[y Mo

Semantics of FOL [4]

e Interpretation of formulas with respect to model
structure M and variable assignment g:
[3IxeMo=1
iff there is an a € Uwm such that [[eIMelx/a] = 1
[VxeIMe=1
iff for all a € Uw, [@]Molval = 1
e g[x/a] is the variable assignment which is identical
to g except that it assigns a to the variable x:

- glx/ally) =a,ifx=y
- glx/ally) = gly), ifx =y

Semantics of FOL [5]

Formula ¢ is true in the model structure M iff
[eIM9 = 1 for every variable assignment g.

A model structure M satisfies a set of formulas I' iff
every formula ¢ € I'is true in M.

- We say that M is a model of I in this case.
¢ is valid iff ¢ is true in all model structures.

¢ is satisfiable iff there is a model structure that
makes @ true; else it is unsatisfiable.

¢ is contingent iff @ is satisfiable but not valid.

Entailment and Deduction [1]

e A set of formulas I entails formula ¢ (I &= @) iff @ is
true in every model of T.

e A (sound and complete) calculus for FOL allows us to
prove @ from Iiff [&= @ by manipulating the
formulas syntactically.

- There are many calculi for FOL: resolution,
tableaux, natural deduction, ...

Entailment and Deduction [2]

Calculi can be implemented to obtain:

- theorem provers: check entailment, validity, and
unsatisfiability

- model builders: check satisfiability, compute
models

- model checkers: determine whether model
satisfies a formula

Dolphins in FOL

e “Dolphins are mammals, not fish.”

- Vx (dolphin’(x) — (mammal’(x) A —=fish’(x)))
e “Dolphins live in pods.”

- Vx (dolphin’(x) — 3y(pod’(y) A live-in'(x, y))
e “Dolphins give birth to one baby at a time.”

- Vx (dolphin’(x) —
Vy Vz Vt ((give-birth-to’ (x, y, t) A
give-birth-to’ (x, z, t)) - x =y)

Students

e “Mary is a student.”
- student’'(m¥*)
e “Mary reads a book.”
- 3x(book’(x) A read’(m*, x))
e “Every student presents a paper”
- Vx(student’(x) — y(paper’'(y) A present’(x,y)))

Expressiveness of FOL [1]

e “John is a blond criminal”

- criminal’(j*) A blond’(j*)
e “John is a famous criminal”

- criminal’(j*) A famous’(j*) ?
e “John is an alleged criminal”

— criminal’(j*) A alleged’(j*) 777

Expressiveness of FOL [2]

e “John is walking quickly.”
- walk’(j*) A quick’(j*) ?
e “John is walking very quickly.”

- 777

Expressiveness of FOL [3]

e “Bill is blond.”
e “Blond is a hair-color.”

20

Expressiveness of FOL [4]

e “ltrains.”
e “|t rained yesterday.”

e “It rains occasionally.”

21

Expressiveness of FOL [5]

e “Mary has all properties of a successful student.”

22

Type Theory

e The types of non-logical expressions provided by
FOL are not sufficient to describe the semantic
function of all natural language expressions.

e Type theory provides a much richer inventory of
types: higher-order relations and functions of
different kinds.

23

Types

e For NL meaning representation the (minimal) set of
basic types is {e, t}
- e (“entity”) is the type of individual terms
- t (“truth value”) is the type of formulas
e Complex types
- If o,T are types, then (o, T) is a type

- (o, T) is the type of functions which map
arguments of type o to values of type T.

24

Type Theory — Syntax [1]

e Vocabulary:
- Possibly empty, pairwise disjoint sets of non-
logical constants:
- CON. for every type T
- Infinite and pairwise disjoint sets of variables:
- VAR. for every type T
- The logical operators known from FOL.

25

Type Theory — Syntax [2]

e The sets of well-formed expressions WE- for every

type T are given by:

- CON; © WE- for every type T

- If a € WE(s, v, B € WEg, then a(B) € WE-.

- If @, y are in WE (i.e., formulas), then so are -,
(@ Ay, (evy), (¢—y) (¢ -y

- If @ is in WE¢, then so are Vv¢ and 3ve, where v is
a variable of arbitrary type.

- If a, B are well-formed expressions of the same
type, then a = B € WE:.

26

Examples

e “Bill is walking.”
bill* : e walk’ : {e,t)
walk’(bill*)

e “Bill is walking quickly.”
walk’ : (e,t) quick’: ((e,t),(e,t))
bill* : e quick’(drive’) : (e,t)
quick’(drive’)(bill*) : t

27

Examples

e “Mary works in Saarbricken”
mary*: e work’: (et) in':{(e/tt)) sb*:e
work’(mary*) : t in’(sb*) : (t,t)
in’(sb*)(work’(mary*)) : t

28

Second-order predicates

e Bill is blond. Blond is a hair colour:
- “Bill” is represented as a term of type e.
- “blond” is represented as a term of type (e,t).
- “hair colour” is represented as a term of type
((e,t),t).

29

Type Theory — Semantics [1]

e Let U be a non-empty set of entities.
e The domain of possible denotations D+ for every
type T is given by:
- De=U
- Dt={0,1}
- Dy, v is the set of functions from D to D+

30

Type Theory — Semantics [2]

e A model structure for a type theoretic language is a
pair M = (Um, V), where
- Uwm is non-empty domain of individuals

- Vm is function, which assigns every non-logical
constant (€CON-) of type T a member of D-.

e Variable assignment g assigns every variable of type
T a member of D-.

31

Type Theory — Semantics [3]

e Interpretation with respect to model structure M and
variable assignment g:

[o ™9 = Vm(a), if a constant

[o ™9 = g(a), if a variable

= [oB) M9 = a I™o(Il B I™9)

- T-oMMo=1iff[pIM9=0
TonpyMo=1iff[¢IMI=1and [y =1,

[a=p Mo =1iff[[a "o =[P Mo

32

Type Theory — Semantics [3]

e Interpretation with respect to model structure M and
variable assignment g:

-favpMo=1
iff there is an a € Dy such that [¢ Molval = 1

- [Mo=1
iff for alla € D+, [[¢ IMolvel = 1

- where v € VAR,

33

Characteristic Functions

e A function of type (o, t) maps each member of D¢ to
true or false.

e See this as representing a subset of Do

- namely, the set of members of Do that are
mapped to true.

e Example: “blond” is a constant of type (e, t). It can
be seen as characterising the set of blond
individuals (of type e).

34

Currying

e All functional types are interpreted as one-place
functions.

e How do we deal with functions/relations with
multiple arguments?

e Currying (a.k.a. “Schénfinkeln”):

- simulate term P(a,b) as the term P(a)(b)
- simulate type (e X e, t) as the type (e, (e,t))

35

Mary reads a book

e Predicate logic

- 3Ax(book’(x) A read’'(m*, x))
e Type theory

- 3Ax(book’(x) A read’(m*)(x))

36

Type Theory

e The definition of the syntax and semantics of type

theory is a straightforward extension of FOL.

" ou ”ou

Notions like “satisfies,” “valid,” “satisfiable,”
“entailment” carry over almost verbatim from FOL.

Type theory is sometimes called “higher-order logic:”

- first-order logic allows quantification over
individual variables (type e)

- second-order logic allows quantification over
variables of type (o, T) where o and T are atomic

37

Meaning Postulates

e “John is walking quickly”
- quick’(walk’)(john*)
e “Mary works in Saarbricken.”

- in’(sb*)(work’(mary*))

38

Summary

First-order logic is nice, but its expressiveness is
limited, and some NL phenomena cannot be
modelled adequately.

- modification

- modification of modifiers

- higher-order properties

Type theory is a generalisation of first-order logic
that allows us to represent the semantics of all these
expressions.

39

