Semantic Theory Type Theory

Manfred Pinkal
Stefan Thater
Summer 2007

Outline

- A reminder: First-order predicate logic (FOL).
- The limits of FOL as a formalism for semantic representations.
- Type theory

Logic as a framework for NL semantics

- Approximate NL meaning as truth conditions.
- Logic supports precise, consistent and controlled meaning representation via truth-conditional interpretation.
- Logic provides deduction systems to model inference processes, controlled through a formal entailment concept.
- Logic supports uniform modelling of the semantic composition process.

Syntax of FOL [2]

- FOL formulas: The smallest set FORM such that
- all atomic formulas are in FORM
- if φ, ψ are in FORM, then $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi)$, $(\varphi \rightarrow \psi),(\varphi-\psi)$ are in FORM
- if x is individual variable, and φ is in FORM, then $\forall \times \varphi$ and $\exists \times \varphi$ are in FORM

Free and Bound Variables

- An occurrence of a variable x in a formula φ is said to be free in φ if this occurrence of x does not fall within the scope of a quantifier $\forall x$ or $\exists x$ in φ.
- If $\forall x \psi$ (or $\exists x \psi$) is a subformula of φ and x is free in ψ, then this occurrence of x is said to be bound by this occurrence of the quantifier $\forall x$ (or $\exists x$).
- $\forall x(A(x) \wedge B(x))$
- $\forall x A(x) \wedge B(x)$
- A sentence is a formula without free variables.

Scope

- If $\forall \times \varphi(\exists \times \varphi)$ is a subformula of ψ, then we call φ the scope of this occurrence of $\forall x(\exists x)$ in ψ.
- We distinguish distinct occurrences of quantifiers as there are formulae like $\forall x A(x) \wedge \forall x B(x)$.
- An example:
- $\exists x(\forall y(T(y)-x=y) \wedge F(x))$

Notational Variants

- We usually omit outermost brackets
- $A \wedge B$ instead of $(A \wedge B)$
- We usually omit brackets if no ambiguities can arise
- $A \wedge B \wedge C$ instead of $(A \wedge(B \wedge C))$
- We sometimes omit brackets for atomic formulas:
- Rxy instead of $R(x, y)$
- Alternative notation for quantifiers
- $\exists x . A(x) \wedge B(x)$ instead of $\exists x(A(x) \wedge B(x))$ γ

Semantics of FOL [1]

- Model structure for FOL: $\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$
- U_{M} is non-empty universe (individual domain)
- V_{M} is an interpretation function, which assigns
- individuals $\left(\in U_{M}\right)$ to individual constants and
- n-ary relations between individuals $\left(\in U_{M}{ }^{n}\right)$ to n place predicate symbols.
- Assignment function for variables $\mathrm{g}: \mathrm{VAR} \rightarrow \mathrm{U}_{\mathrm{M}}$

Semantics of FOL [2]

- Interpretation of terms with respect to model structure M and variable assignment g
- $[[\alpha]]^{M, g}=V_{M}(\alpha)$, if α is an individual constant
- $[[\alpha]]^{\mathrm{M}, \mathrm{g}}=\mathrm{g}(\alpha)$, if α is a variable

Semantics of FOL [3]

- Interpretation of formulas with respect to model structure M and variable assignment g :

$$
\begin{aligned}
& {\left[\left[R\left(t_{1}, \ldots, t_{n}\right)\right]\right]^{M, g}=1 \text { iff }\left\langle\left[\left[t_{1}\right]\right]^{M, g}, \ldots,\left[\left[t_{n}\right]^{M, g}\right\rangle \in V_{M}(R)\right.} \\
& \llbracket[\mathrm{s}=\mathrm{t}]^{\mathrm{M}, \mathrm{~g}}=1 \text { iff }[[\mathrm{s}]]^{\mathrm{M}, \mathrm{~g}}=\left[[\mathrm{t}]^{\mathrm{M}, \mathrm{~g}}\right. \\
& {[[\neg \varphi]]^{\mathrm{M}, \mathrm{~g}}=1 \text { iff }[[\varphi]]^{\mathrm{M}, \mathrm{~g}}=0} \\
& {\left[[\varphi \wedge \psi] ^ { M , g } = 1 \text { iff } \left[[\varphi] ^ { M , g } = 1 \text { and } \left[[\psi]^{M, g}=1\right.\right.\right.} \\
& {\left[[\varphi \vee \psi] ^ { M , g } = 1 \text { iff } \left[[\varphi]^{M, g}=1 \text { or }[[\psi]]^{M, g}=1\right.\right.} \\
& {\left[[\varphi \rightarrow \psi] ^ { \mathrm { M } , \mathrm { g } } = 1 \text { iff } \left[[\varphi] ^ { \mathrm { M } , \mathrm { g } } = 0 \text { or } \left[[\Psi]^{\mathrm{M}, \mathrm{~g}}=1\right.\right.\right.} \\
& {[[\varphi-\psi]]^{\mathrm{M}, \mathrm{~g}}=1 \text { iff }\left[[\varphi]^{\mathrm{M}, \mathrm{~g}}=\left[[\psi]^{\mathrm{M}, \mathrm{~g}}\right.\right.}
\end{aligned}
$$

Semantics of FOL [4]

- Interpretation of formulas with respect to model structure M and variable assignment g :
$\left[[\exists \times \varphi]^{M, 9}=1\right.$
iff there is an $a \in U_{M}$ such that $[[\varphi]]^{M, g[x / a]}=1$
【[$\forall \times \varphi]^{M, g}=1$ iff for all $a \in U_{M},[[\varphi]]^{M, g[x / a]}=1$
- $g[x / a]$ is the variable assignment which is identical to g except that it assigns a to the variable x :
- $g[x / a](y)=a$, if $x=y$
- $g[x / a](y)=g(y)$, if $x \neq y$

Semantics of FOL [5]

- Formula φ is true in the model structure M iff $\left[[\varphi]^{\mathrm{M}, \mathrm{g}}=1\right.$ for every variable assignment g .
- A model structure M satisfies a set of formulas 「iff every formula $\varphi \in \Gamma$ is true in M.
- We say that M is a model of Γ in this case.
- φ is valid iff φ is true in all model structures.
- φ is satisfiable iff there is a model structure that makes φ true; else it is unsatisfiable.
- φ is contingent iff φ is satisfiable but not valid.

Entailment and Deduction [2]

- Calculi can be implemented to obtain:
- theorem provers: check entailment, validity, and unsatisfiability
- model builders: check satisfiability, compute models
- model checkers: determine whether model satisfies a formula

Entailment and Deduction [1]

- A set of formulas Γ entails formula $\varphi(\Gamma \vDash \varphi)$ iff φ is true in every model of Γ.
- A (sound and complete) calculus for FOL allows us to prove φ from Γ iff $\Gamma \vDash \varphi$ by manipulating the formulas syntactically.
- There are many calculi for FOL: resolution, tableaux, natural deduction, ...

Dolphins in FOL

- "Dolphins are mammals, not fish."
- $\forall x\left(d o l p h i n '(x) ~ \rightarrow\left(m a m m a l^{\prime}(x) \wedge \neg f i s h^{\prime}(x)\right)\right)$
- "Dolphins live in pods."
- $\forall x\left(d o l p h i n^{\prime}(x)-\exists y\left(\right.\right.$ pod $^{\prime}(y) \wedge$ live-in'(x, y))
- "Dolphins give birth to one baby at a time."
- $\forall x$ (dolphin'(x)
$\forall y \forall z \forall t(($ give-birth-to' $(x, y, t) \wedge$
give-birth-to' $(x, z, t)) \rightarrow x=y)$

Students

- "Mary is a student."
- student'(m*)
- "Mary reads a book."
- $\exists x\left(\operatorname{book}^{\prime}(x) \wedge\right.$ read' $\left.\left(m^{*}, x\right)\right)$
- "Every student presents a paper"
- $\forall x($ student' (x) - ヨy(paper'(y) ^ present' $(x, y)))$

Expressiveness of FOL [1]

- "John is a blond criminal"
- criminal'(j*) ^ blond'(j*)
- "John is a famous criminal"
- criminal'(j*) ^ famous'(j*) ?
- "John is an alleged criminal"
- criminal' $\left(j^{*}\right) \wedge$ alleged ${ }^{\prime}\left(j^{*}\right)$???

Expressiveness of FOL [2]

- "John is walking quickly."
- walk'(j*) ^ quick'(j*) ?
- "John is walking very quickly."
- ???

Expressiveness of FOL [3]

- "Bill is blond."
- "Blond is a hair-color."

Expressiveness of FOL [4]

- "It rains."
- "It rained yesterday."
- "It rains occasionally."

Type Theory

- The types of non-logical expressions provided by FOL are not sufficient to describe the semantic function of all natural language expressions.
- Type theory provides a much richer inventory of types: higher-order relations and functions of different kinds.

Expressiveness of FOL [5]

- "Mary has all properties of a successful student."

Types

- For NL meaning representation the (minimal) set of basic types is $\{\mathrm{e}, \mathrm{t}\}$
- e ("entity") is the type of individual terms
- t ("truth value") is the type of formulas
- Complex types
- If σ, τ are types, then $\langle\sigma, \tau\rangle$ is a type
- $\langle\sigma, \tau\rangle$ is the type of functions which map arguments of type σ to values of type τ.

Type Theory - Syntax [1]

- Vocabulary:
- Possibly empty, pairwise disjoint sets of nonlogical constants:
- CON ${ }_{\tau}$ for every type τ
- Infinite and pairwise disjoint sets of variables:
- VAR for every type τ
- The logical operators known from FOL.

Type Theory - Syntax [2]

- The sets of well-formed expressions WE_{τ} for every type τ are given by:
- $\operatorname{CON}_{\tau} \subseteq W E_{\tau}$ for every type τ
- If $\alpha \in W E_{(\sigma, \tau)}, \beta \in W E_{\sigma}$, then $\alpha(\beta) \in W_{E_{\tau}}$.
- If φ, ψ are in WE_{t} (i.e., formulas), then so are $\neg \varphi$, $(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi-\psi)$
- If φ is in $W E_{t}$, then so are $\forall v \varphi$ and $\exists v \varphi$, where v is a variable of arbitrary type.
- If α, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$.

Examples

- "Bill is walking."
bill*: e walk': $\langle e, t\rangle$
walk'(bill*)
- "Bill is walking quickly."
bill*: e $\begin{aligned} & \frac{\text { walk' }}{} \text { : }\langle\mathrm{e}, \mathrm{t}\rangle \text { quick' }:\langle\langle e, t\rangle,\langle\mathrm{e}, \mathrm{t}\rangle \\ & \text { quick'(drive') : }\langle\mathrm{e}, \mathrm{t}\rangle\end{aligned}$
quick'(drive')(bill*) : t

Second-order predicates

- Bill is blond. Blond is a hair colour:
- "Bill" is represented as a term of type e.
- "blond" is represented as a term of type $\langle e, t\rangle$.
- "hair colour" is represented as a term of type $\langle\langle e, t\rangle, t\rangle$.

Type Theory - Semantics [1]

- Let U be a non-empty set of entities.
- The domain of possible denotations D_{τ} for every type τ is given by:
- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{(\sigma, \tau)}$ is the set of functions from D_{σ} to D_{τ}

Type Theory - Semantics [2]

- A model structure for a type theoretic language is a pair $M=\left\langle U_{M}, V_{M}\right\rangle$, where
- U_{M} is non-empty domain of individuals
- V_{M} is function, which assigns every non-logical constant $\left(\in \mathcal{C O N}_{\tau}\right)$ of type τ a member of D_{τ}.
- Variable assignment g assigns every variable of type τ a member of D_{τ}.

Type Theory - Semantics [3]

- Interpretation with respect to model structure M and variable assignment g:
- $[[\alpha]]^{M, g}=V_{M}(\alpha)$, if α constant
- [[$\alpha]^{\mathrm{M}, g}=\mathrm{g}(\alpha)$, if α variable
- [[$\alpha(\beta)]]^{M, g}=[[\alpha]]^{M, g}\left([[]]^{M, g}\right)$
- [[$\neg \phi]]^{\mathrm{M}, \mathrm{g}}=1$ iff $\left[[\phi]^{\mathrm{M}, \mathrm{g}}=0\right.$
- [[$\phi \wedge \psi]^{\mathrm{M}, \mathrm{g}}=1 \mathrm{iff}[[\phi]]^{\mathrm{M}, \mathrm{g}}=1$ and $\left[[\Psi]^{\mathrm{M}, \mathrm{g}}=1\right.$,
- $[[\alpha=\beta]]^{M, g}=1$ iff $[[\alpha]]^{M, g}=[[\beta]]^{M, g}$

Type Theory - Semantics [3]

- Interpretation with respect to model structure M and variable assignment g :
- [[$\exists \mathrm{v} \phi]]^{\mathrm{M}, \mathrm{g}}=1$
iff there is an $a \in D_{\tau}$ such that $[[\phi]]^{M, g[v / a]}=1$
- [[$\forall v \phi]]^{\mathrm{M}, \mathrm{g}}=1$
iff for all $a \in D_{\mathrm{T}},[[\phi]]^{M, g[v / a]}=1$
- where $v \in \operatorname{VAR}_{\tau}$

Characteristic Functions

- A function of type $\langle\sigma, t\rangle$ maps each member of D_{σ} to true or false.
- See this as representing a subset of D_{o}
- namely, the set of members of D_{σ} that are mapped to true.
- Example: "blond" is a constant of type $\langle\mathrm{e}, \mathrm{t}\rangle$. It can be seen as characterising the set of blond individuals (of type e).

Currying

- All functional types are interpreted as one-place functions.
- How do we deal with functions/relations with multiple arguments?
- Currying (a.k.a. "Schönfinkeln"):
- simulate term $P(a, b)$ as the term $P(a)(b)$
- simulate type $\langle e \times e, t\rangle$ as the type $\langle e,\langle e, t\rangle\rangle$

Mary reads a book

- Predicate logic
- $\exists x\left(\operatorname{book}^{\prime}(x) \wedge\right.$ read $\left.^{\prime}\left(m^{*}, x\right)\right)$
- Type theory
- $\exists x\left(\operatorname{book}^{\prime}(x) \wedge\right.$ read $\left.^{\prime}\left(m^{*}\right)(x)\right)$

Type Theory

- The definition of the syntax and semantics of type theory is a straightforward extension of FOL.
- Notions like "satisfies," "valid," "satisfiable," "entailment" carry over almost verbatim from FOL.
- Type theory is sometimes called "higher-order logic:"
- first-order logic allows quantification over individual variables (type e)
- second-order logic allows quantification over variables of type $\langle\sigma, \tau\rangle$ where σ and τ are atomic
\qquad

Meaning Postulates

- "John is walking quickly"
- quick'(walk')(john*)
- "Mary works in Saarbrücken."
- in'(sb*)(work'(mary*))

Summary

- First-order logic is nice, but its expressiveness is limited, and some NL phenomena cannot be modelled adequately.
- modification
- modification of modifiers
- higher-order properties
..
- Type theory is a generalisation of first-order logic that allows us to represent the semantics of all these expressions.

