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Semantic Theory

Type Theory

• Approximate NL meaning as truth conditions. 

• Logic supports precise, consistent and controlled 

meaning representation via truth-conditional 

interpretation. 

• Logic provides deduction systems to model 

inference processes, controlled through a formal 

entailment concept.

• Logic supports uniform modelling of the semantic 

composition process.

Logic as a framework for NL 

semantics

2

Outline

• A reminder: First-order predicate logic (FOL).

• The limits of FOL as a formalism for semantic  

representations.

• Type theory
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• Non-logical expressions:

– Individual constants: CON = { j*, b*, … }

– n-place relation constants: RELn, for all n ! 0

• Individual variables: VAR = { x, y, z, … }

• Terms: TERM = VAR " CON

• Atomic formulas:

– R(t1,…, tn) for R # RELn and t1, …, tn # TERM

– s = t for s, t # TERM

Syntax of FOL [1]
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• FOL formulas: The smallest set FORM such that

– all atomic formulas are in FORM

– if $, % are in FORM, then ¬$, ($ & %), ($ ' %), 

($()(%), ($ * %) are in FORM

– if x is individual variable, and $ is in FORM, then 

+x$ and ,x$ are in FORM

Syntax of FOL [2]

5

Scope

• If +x$ (,x$) is a subformula of %, then we call $ the 

scope of this occurrence of +x (,x) in %.

– We distinguish distinct occurrences of quantifiers 

as there are formulae like +xA(x) & +xB(x).

• An example:

– ,x(+y(T(y) * x=y) & F(x))
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Free and Bound Variables

• An occurrence of a variable x in a formula $ is said 

to be free in $ if this occurrence of x does not fall 

within the scope of a quantifier +x or ,x in $.

• If +x% (or ,x%) is a subformula of $ and x is free in %, 

then this occurrence of x is said to be bound by this 

occurrence of the quantifier +x (or ,x).

– +x (A(x) & B(x))

– +x A(x) & B(x)

• A sentence is a formula without free variables.
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Notational Variants

• We usually omit outermost brackets

– A & B instead of (A & B)

• We usually omit brackets if no ambiguities can arise

– A & B & C instead of (A & (B & C))

• We sometimes omit brackets for atomic formulas:

– Rxy instead of R(x,y) 

• Alternative notation for quantifiers

– ,x . A(x) & B(x) instead of ,x(A(x) & B(x))
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• Model structure for FOL: M = /UM, VM0

– UM is non-empty universe (individual domain)

– VM is an interpretation function, which assigns

– individuals (#UM) to individual constants and

– n-ary relations between individuals (#UM
n) to n-

place predicate symbols.

• Assignment function for variables g: VAR ) UM

Semantics of FOL [1]
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• Interpretation of terms with respect to model 

structure M and variable assignment g:

– [[1]]M,g =  VM(1), if 1 is an individual constant

– [[1]]M,g =  g(1), if 1 is a variable

Semantics of FOL [2]
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• Interpretation of formulas with respect to model 

structure M and variable assignment g:

-[[ R(t1, ..., tn) ]]M,g = 1 - iff  /[[ t1 ]]M,g, ..., [[ tn ]]M,g0 # VM(R)

 [[ s = t ]]M,g = 1  iff  [[ s ]]M,g = [[ t ]]M,g

- [[ ¬$ ]]M,g = 1 - iff  [[ $ ]]M,g = 0 

- [[ $ & % ]]M,g = 1 - iff  [[ $ ]]M,g = 1 and [[ % ]]M,g = 1

- [[ $ ' % ]]M,g = 1 - iff  [[ $ ]]M,g = 1 or [[ % ]]M,g = 1

- [[ $ ) % ]]M,g = 1 - iff  [[ $ ]]M,g = 0 or [[ % ]]M,g = 1 

- [[ $ * % ]]M,g = 1 - iff  [[ $ ]]M,g = [[ % ]]M,g 

Semantics of FOL [3]
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• Interpretation of formulas with respect to model 

structure M and variable assignment g:

- [[ ,x$ ]]M,g = 1

- - iff there is an a # UM such that [[$]]M,g[x/a] = 1 

- [[ +x$ ]]M,g = 1

- - iff for all a # UM, [[$]]M,g[x/a] = 1

• g[x/a] is the variable assignment which is identical 

to g except that it assigns a to the variable x:

– g[x/a](y) = a, if x = y

– g[x/a](y) = g(y), if x . y

Semantics of FOL [4]
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• Formula $ is true in the model structure M iff 

[[$]]M,g(= 1 for every variable assignment g.

• A model structure M satisfies a set of formulas 2 iff 

every formula $ # 2 is true in M.

– We say that M is a model of 2 in this case.

• $ is valid iff $ is true in all model structures.

• $ is satisfiable iff there is a model structure that 

makes $ true; else it is unsatisfiable.

• $ is contingent iff $ is satisfiable but not valid.

Semantics of FOL [5]
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• A set of formulas 2 entails formula $ (2 3 $) iff $ is 

true in every model of 2. 

• A (sound and complete) calculus for FOL allows us to 

prove $ from 2 iff 2 3 $ by manipulating the 

formulas syntactically. 

– There are  many calculi for FOL: resolution, 

tableaux, natural deduction, …

Entailment and Deduction [1]
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Entailment and Deduction [2]

• Calculi can be implemented to obtain: 

– theorem provers: check entailment, validity, and 

unsatisfiability 

– model builders: check satisfiability, compute 

models 

– model checkers: determine whether model 

satisfies a formula

15

• “Dolphins are mammals, not fish.”

– +x (dolphin’(x) ) (mammal’(x) & ¬fish’(x)))

• “Dolphins live in pods.”

– +x (dolphin’(x) ) ,y(pod’(y) & live-in’(x, y))

• “Dolphins give birth to one baby at a time.”

– +x (dolphin’(x) )

  - +y +z +t (( -give-birth-to’ (x, y, t) &

- - give-birth-to’ (x, z, t)) ) x = y)

Dolphins in FOL
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• “Mary is a student.”

– student’(m*)

• “Mary reads a book.”

– ,x(book’(x) & read’(m*, x))

• “Every student presents a paper”

– +x(student’(x) ) ,y(paper’(y) & present’(x,y)))

Students
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Expressiveness of FOL [1]

• “John is a blond criminal”

– criminal’(j*) & blond’(j*)

• “John is a famous criminal”

– criminal’(j*) & famous’(j*)  ?

• “John is an alleged criminal”

- criminal’(j*) & alleged’(j*)  ???
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Expressiveness of FOL [2]

• “John is walking quickly.”

– walk’(j*) & quick’(j*)  ?

• “John is walking very quickly.”

- ???
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Expressiveness of FOL [3]

• “Bill is blond.”

• “Blond is a hair-color.”
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Expressiveness of FOL [4]

• “It rains.”

• “It rained yesterday.”

• “It rains occasionally.”
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Expressiveness of FOL [5]

• “Mary has all properties of a successful student.”
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Type Theory

• The types of non-logical expressions provided by 

FOL are not sufficient to describe the semantic 

function of all natural language expressions.

• Type theory provides a much richer inventory of 

types: higher-order relations and functions of 

different kinds. 
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• For NL meaning representation the (minimal) set of 

basic types is {e, t}

– e (“entity”) is the type of individual terms

– t (“truth value”) is the type of formulas

• Complex types

– If 4,5 are types, then /4, 50 is a type

– /4, 50 is the type of functions which map 

arguments of type 4 to values of type 5.

Types
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• Vocabulary:

– Possibly empty, pairwise disjoint sets of non-

logical constants:

– CON5 for every type 5

– Infinite and pairwise disjoint sets of variables:

– VAR5 for  every type 5

– The logical operators known from FOL.

Type Theory – Syntax [1]
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• The sets of well-formed expressions WE5 for every 

type 5 are given by:

– CON5 6 WE5 for every type 5

– If 1 # WE/4, 50, 7 # WE4, then 1(7) # WE5.

– If $, % are in WEt (i.e., formulas), then so are ¬$, 

($ & %), ($ ' %), ($ ) %), ($ * %)

– If $ is in WEt , then so are +v$ and ,v$, where v is 

a variable of arbitrary type.

– If 1, 7 are well-formed expressions of the same 

type, then 1 = 7 # WEt.

Type Theory – Syntax [2]
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Examples

• “Bill is walking.”

- - bill* : e  - walk’ : /e,t0

- - - - walk’(bill*)

• “Bill is walking quickly.”

- - - - walk’ : /e,t0- quick’ : //e,t0,/e,t00

- - bill* : e  - - quick’(drive’) : /e,t0

- - - quick’(drive’)(bill*) : t
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• “Mary works in Saarbrücken”

- mary* : e- - work’ : /e,t0-   in’ : /e,/t,t00-  sb* : e 

- - - work’(mary*) : t- - - - in’(sb*) : /t,t0

- - - - - in’(sb*)(work’(mary*)) : t

Examples
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• Bill is blond. Blond is a hair colour:

– “Bill” is represented as a term of type e.

– “blond” is represented as a term of type /e,t0. 

– “hair colour” is represented as a term of type  

//e,t0,t0.

Second-order predicates
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• Let U be a non-empty set of entities.

• The domain of possible denotations D5 for every 

type 5 is given by:

– De = U

– Dt = {0,1}

– D/4, 50 is the set of functions from D4 to D5 

Type Theory – Semantics [1]
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• A model structure for a type theoretic language is a 

pair M = /UM, VM0, where-

– UM is non-empty domain of individuals

– VM is function, which assigns every non-logical 

constant (#CON5) of type 5 a member of D5.

• Variable assignment g assigns every variable of type 

5  a member of D5.

Type Theory – Semantics [2]
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• Interpretation with respect to model structure M and 

variable assignment g:

– [[ 1 ]]M,g = VM(1), if 1 constant

– [[ 1 ]]M,g = g(1), if 1 variable

– [[ 1(7) ]]M,g = [[ 1 ]]M,g([[ 7 ]]M,g) -

– [[ ¬8 ]]M,g = 1 iff [[ 8 ]]M,g = 0

– [[ 8 & % ]]M,g = 1 iff [[ 8 ]]M,g = 1 and [[ % ]]M,g = 1,

– …

– [[ 1=7 ]]M,g = 1 iff [[ 1 ]]M,g = [[ 7 ]]M,g

Type Theory – Semantics [3]
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• Interpretation with respect to model structure M and 

variable assignment g:

– [[ ,v8 ]]M,g = 1

- iff there is an a # D5 such that [[ 8 ]]M,g[v/a] = 1 

– [[ +v8 ]]M,g = 1

- iff for all a # D5, [[ 8 ]]M,g[v/a] = 1 

– where v # VAR5 

Type Theory – Semantics [3]
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Characteristic Functions

• A function of type /4, t0 maps each member of D4 to  

true or false.

• See this as representing a subset of D4

– namely, the set  of members of D4 that are 

mapped to true.

• Example: “blond” is a constant of type /e, t0. It can 

be seen as characterising the set of blond 

individuals (of  type e). 
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Currying

• All functional types are interpreted as one-place  

functions.

• How do we deal with functions/relations with 

multiple  arguments?

• Currying (a.k.a. “Schönfinkeln”):

– simulate term P(a,b) as the term P(a)(b)

– simulate type /e 9 e, t0 as the type /e, /e,t00
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Mary reads a book

• Predicate logic

– ,x(book’(x) & read’(m*, x))

• Type theory

– ,x(book’(x) & read’(m*)(x))
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Type Theory

• The definition of the syntax and semantics of type 

theory is a straightforward extension of FOL.

• Notions like “satisfies,” “valid,” “satisfiable,” 

“entailment” carry over almost verbatim from FOL.

• Type theory is sometimes called “higher-order logic:”

– first-order logic allows quantification over 

individual variables (type e)

– second-order logic allows quantification over  

variables of type /4, 50 where 4 and 5 are atomic

– …
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Meaning Postulates

• “John is walking quickly”

– quick’(walk’)(john*)

• “Mary works in Saarbrücken.”

– in’(sb*)(work’(mary*))
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Summary

• First-order logic is nice, but its expressiveness is 

limited, and some NL phenomena cannot be 

modelled adequately.

– modification

– modification of modifiers

– higher-order properties

– …

• Type theory is a generalisation of first-order logic 

that allows us to represent the semantics of all these  

expressions.
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