

## Logic as a framework for NL semantics

- Approximate NL meaning as truth conditions.
- Logic supports precise, consistent and controlled meaning representation via truth-conditional interpretation.
- Logic provides deduction systems to model inference processes, controlled through a formal entailment concept.
- Logic supports uniform modelling of the semantic composition process.

2

4

# Outline A reminder: First-order predicate logic (FOL). The limits of FOL as a formalism for semantic representations. Type theory

3

#### Syntax of FOL [1]

- Non-logical expressions:
  - Individual constants:  $CON = \{ j^*, b^*, ... \}$
  - n-place relation constants: REL<sup>n</sup>, for all  $n \ge 0$
- Individual variables: VAR = { x, y, z, ... }
- Terms: TERM = VAR  $\cup$  CON
- Atomic formulas:
  - $R(t_1,...,\,t_n)$  for  $R\in REL^n$  and  $t_1,\,...,\,t_n\in TERM$
  - s = t for s, t  $\in$  TERM

#### Syntax of FOL [2]

- FOL formulas: The smallest set FORM such that
  - all atomic formulas are in FORM
  - if  $\phi$ ,  $\psi$  are in FORM, then  $\neg \phi$ ,  $(\phi \land \psi)$ ,  $(\phi \lor \psi)$ ,  $(\phi \to \psi)$ ,  $(\phi \mapsto \psi)$  are in FORM
  - if x is individual variable, and  $\phi$  is in FORM, then  $\forall x \phi$  and  $\exists x \phi$  are in FORM

#### Free and Bound Variables

- An occurrence of a variable x in a formula φ is said to be free in φ if this occurrence of x does not fall within the scope of a quantifier ∀x or ∃x in φ.
- If ∀xψ (or ∃xψ) is a subformula of φ and x is free in ψ, then this occurrence of x is said to be bound by this occurrence of the quantifier ∀x (or ∃x).
  - $\forall x (A(x) \land B(x))$
  - $\forall x A(x) \land B(x)$
- A sentence is a formula without free variables.

# If ∀xφ (∃xφ) is a subformula of ψ, then we call φ the scope of this occurrence of ∀x (∃x) in ψ.

Scope

- We distinguish distinct occurrences of quantifiers as there are formulae like ∀xA(x) ∧ ∀xB(x).
- An example:
  - $\exists x (\forall y (T(y) ↔ x=y) \land F(x))$

#### Notational Variants

6

8

- We usually omit outermost brackets
  - $A \wedge B$  instead of ( $A \wedge B$ )
- We usually omit brackets if no ambiguities can arise
  - $A \land B \land C$  instead of  $(A \land (B \land C))$
- We sometimes omit brackets for atomic formulas:
  - Rxy instead of R(x,y)
- Alternative notation for quantifiers
  - $\exists x . A(x) \land B(x)$  instead of  $\exists x(A(x) \land B(x))$

#### Semantics of FOL [1]

- Model structure for FOL:  $M = \langle U_M, V_M \rangle$ 
  - U<sub>M</sub> is non-empty universe (individual domain)
  - $V_M$  is an interpretation function, which assigns
    - individuals ( $\in U_M$ ) to individual constants and
    - n-ary relations between individuals ( $\in\!U_M{}^n)$  to n-place predicate symbols.
- Assignment function for variables g: VAR  $\rightarrow$  UM

#### Semantics of FOL [3]

• Interpretation of formulas with respect to model structure M and variable assignment g:

```
\begin{split} & \llbracket \mathsf{R}(\mathsf{t}_1,\,...,\,\mathsf{t}_n) \ \rrbracket^{M,g} = 1 \quad \text{iff} \ (\llbracket \mathsf{t}_1 \ \rrbracket^{M,g},\,...,\,\llbracket \mathsf{t}_n \ \rrbracket^{M,g}) \in \mathsf{V}_\mathsf{M}(\mathsf{R}) \\ & \llbracket \mathsf{s} = \mathsf{t} \ \rrbracket^{M,g} = 1 \quad \text{iff} \ \llbracket \mathsf{s} \ \rrbracket^{M,g} = \llbracket \mathsf{t} \ \rrbracket^{M,g} \\ & \llbracket \neg \varphi \ \rrbracket^{M,g} = 1 \quad \text{iff} \ \llbracket \varphi \ \rrbracket^{M,g} = 0 \\ & \llbracket \varphi \land \psi \ \rrbracket^{M,g} = 1 \quad \text{iff} \ \llbracket \varphi \ \rrbracket^{M,g} = 1 \text{ and} \ \llbracket \psi \ \rrbracket^{M,g} = 1 \\ & \llbracket \varphi \lor \psi \ \rrbracket^{M,g} = 1 \quad \text{iff} \ \llbracket \varphi \ \rrbracket^{M,g} = 1 \text{ or} \ \llbracket \psi \ \rrbracket^{M,g} = 1 \end{split}
```

 $[\![ \phi \rightarrow \psi ]\!]^{M,g} = 1 \hspace{0.2cm} \text{iff} \hspace{0.2cm} [\![ \phi ]\!]^{M,g} = 0 \hspace{0.2cm} \text{or} \hspace{0.2cm} [\![ \psi ]\!]^{M,g} = 1$ 

$$[\llbracket \phi \mapsto \psi ]]^{M,g} = 1 \text{ iff } [\llbracket \phi ]]^{M,g} = [\llbracket \psi ]]^{M,g}$$



- Interpretation of terms with respect to model structure M and variable assignment g:
  - $[[\alpha]]^{M,g} = V_M(\alpha)$ , if  $\alpha$  is an individual constant
  - $[[\alpha]]^{M,g} = g(\alpha)$ , if  $\alpha$  is a variable

#### Semantics of FOL [4]

• Interpretation of formulas with respect to model structure M and variable assignment g: [[  $\exists x \phi$  ]]<sup>M,g</sup> = 1 iff there is an  $a \in U_M$  such that [[ $\phi$ ]]<sup>M,g[x/a]</sup> = 1

 $[[ \forall x \phi ]]^{M,g} = 1$ iff for all  $a \in U_M$ ,  $[[\phi]]^{M,g[x/a]} = 1$ 

- g[x/a] is the variable assignment which is identical to g except that it assigns a to the variable x:
  - g[x/a](y) = a, if x = y
  - -g[x/a](y) = g(y), if  $x \neq y$

Ш

9

#### Semantics of FOL [5]

- Formula φ is true in the model structure M iff
   [[φ]]<sup>M,g</sup> = 1 for every variable assignment g.
- A model structure M satisfies a set of formulas  $\Gamma$  iff every formula  $\varphi \in \Gamma$  is true in M.
  - We say that M is a model of  $\Gamma$  in this case.
- $\varphi$  is valid iff  $\varphi$  is true in all model structures.
- φ is satisfiable iff there is a model structure that makes φ true; else it is unsatisfiable.
- $\varphi$  is contingent iff  $\varphi$  is satisfiable but not valid.

#### Entailment and Deduction [1]

- A set of formulas Γ entails formula φ (Γ ⊨ φ) iff φ is true in every model of Γ.
- A (sound and complete) calculus for FOL allows us to prove φ from Γ iff Γ ⊨ φ by manipulating the formulas syntactically.
  - There are many calculi for FOL: resolution, tableaux, natural deduction, ...

#### Entailment and Deduction [2]

- Calculi can be implemented to obtain:
  - theorem provers: check entailment, validity, and unsatisfiability
  - model builders: check satisfiability, compute models
  - model checkers: determine whether model satisfies a formula



13

#### Students

- "Mary is a student."
  - student'(m\*)
- "Mary reads a book."
  - ∃x(book'(x) ∧ read'(m\*, x))
- "Every student presents a paper"
  - $\forall x(student'(x) \rightarrow \exists y(paper'(y) \land present'(x,y)))$

17

19

## Expressiveness of FOL [1]

- "John is a blond criminal"
  - criminal'(j\*) ^ blond'(j\*)
- "John is a famous criminal"
  - criminal'(j\*) A famous'(j\*) ?
- "John is an alleged criminal"
  - criminal'(j\*) ^ alleged'(j\*) ???

#### Expressiveness of FOL [2]

- "John is walking quickly."
  - walk'(j\*) ^ quick'(j\*) ?
- "John is walking very quickly."
  - ???

#### Expressiveness of FOL [3]

- "Bill is blond."
- "Blond is a hair-color."

#### Expressiveness of FOL [4]

- "It rains."
- "It rained yesterday."
- "It rains occasionally."

#### Expressiveness of FOL [5]

• "Mary has all properties of a successful student."

### Type Theory

- The types of non-logical expressions provided by FOL are not sufficient to describe the semantic function of all natural language expressions.
- Type theory provides a much richer inventory of types: higher-order relations and functions of different kinds.

# For NL meaning representation the (minimal) set of basic types is {e, t} e ("entity") is the type of individual terms t ("truth value") is the type of formulas Complex types If σ,τ are types, then (σ, τ) is a type (σ, τ) is the type of functions which map arguments of type σ to values of type τ.

21

#### Type Theory – Syntax [1]

- Vocabulary:
  - Possibly empty, pairwise disjoint sets of nonlogical constants:
    - $CON_{\tau}$  for every type  $\tau$
  - Infinite and pairwise disjoint sets of variables:

25

- $VAR_{\tau}$  for every type  $\tau$
- The logical operators known from FOL.

#### Type Theory – Syntax [2]

- The sets of well-formed expressions  $\text{WE}_{\tau}$  for every type  $\tau$  are given by:
  - $CON_{\tau} \subseteq WE_{\tau}$  for every type  $\tau$
  - If  $\alpha \in WE_{(\sigma, \tau)}$ ,  $\beta \in WE_{\sigma}$ , then  $\alpha(\beta) \in WE_{\tau}$ .
  - If  $\phi$ ,  $\psi$  are in WE<sub>t</sub> (*i.e.*, formulas), then so are  $\neg \phi$ , ( $\phi \land \psi$ ), ( $\phi \lor \psi$ ), ( $\phi \rightarrow \psi$ ), ( $\phi \rightarrow \psi$ )
  - If  $\phi$  is in WE\_t , then so are  $\forall v\phi$  and  $\exists v\phi,$  where v is a variable of arbitrary type.
  - If  $\alpha$ ,  $\beta$  are well-formed expressions of the same type, then  $\alpha = \beta \in WE_t$ .







#### Second-order predicates

- Bill is blond. Blond is a hair colour:
  - "Bill" is represented as a term of type e.
  - "blond" is represented as a term of type (e,t).
  - "hair colour" is represented as a term of type ((e,t),t).

#### Type Theory – Semantics [1]

- Let U be a non-empty set of entities.
- The domain of possible denotations  $\mathsf{D}_\tau$  for every type  $\tau$  is given by:
- $D_e = U$
- $D_t = \{0,1\}$
- $D_{\langle\sigma,\ \tau\rangle}$  is the set of functions from  $D_\sigma$  to  $D_\tau$

29

31

#### Type Theory – Semantics [2]

- A model structure for a type theoretic language is a pair M = (U<sub>M</sub>, V<sub>M</sub>), where
  - $U_M$  is non-empty domain of individuals
  - $V_M$  is function, which assigns every non-logical constant ( $\in CON_{\tau}$ ) of type  $\tau$  a member of  $D_{\tau}$ .
- Variable assignment g assigns every variable of type  $\tau$  a member of  $D_{\tau}$ .

# Type Theory – Semantics [3] Interpretation with respect to model structure M and variable assignment g: - [[ α ]]<sup>M,g</sup> = V<sub>M</sub>(α), if α constant

- [[  $\alpha$  ]]<sup>M,g</sup> = g( $\alpha$ ), if  $\alpha$  variable
- [[  $\alpha(\beta)$  ]]<sup>M,g</sup> = [[  $\alpha$  ]]<sup>M,g</sup>([[  $\beta$  ]]<sup>M,g</sup>)
- $[[ \neg \varphi ]]^{M,g} = 1$  iff  $[[ \varphi ]]^{M,g} = 0$
- [[  $\phi \land \psi$  ]]<sup>M,g</sup> = 1 iff [[  $\phi$  ]]<sup>M,g</sup> = 1 and [[  $\psi$  ]]<sup>M,g</sup> = 1,
- ...
- [[  $\alpha = \beta$  ]]<sup>M,g</sup> = 1 iff [[  $\alpha$  ]]<sup>M,g</sup> = [[  $\beta$  ]]<sup>M,g</sup>

#### Type Theory – Semantics [3]

- Interpretation with respect to model structure M and variable assignment g:
  - [[ ∃νφ ]]<sup>M,g</sup> = 1

iff there is an  $a \in D_{\tau}$  such that [[  $\phi$  ]]<sup>M,g[v/a]</sup> = 1

- [[∀v¢]]<sup>M,g</sup> = 1

```
iff for all a\in D_{\tau}, [[ \varphi ]]^{M,g[\nu/a]}=1
```

- where  $v \in VAR_{\tau}$ 

#### 33

#### **Characteristic Functions**

- A function of type ( $\sigma$ , t) maps each member of  $D_{\sigma}$  to true or false.
- See this as representing a subset of  $\mathsf{D}_\sigma$ 
  - namely, the set of members of  $\mathsf{D}_\sigma$  that are mapped to true.
- Example: "blond" is a constant of type (e, t). It can be seen as characterising the set of blond individuals (of type e).





#### Type Theory

- The definition of the syntax and semantics of type theory is a straightforward extension of FOL.
- Notions like "satisfies," "valid," "satisfiable," "entailment" carry over almost verbatim from FOL.
- Type theory is sometimes called "higher-order logic:"
  - first-order logic allows quantification over individual variables (type e)
  - second-order logic allows quantification over variables of type ( $\sigma$ ,  $\tau$ ) where  $\sigma$  and  $\tau$  are atomic

- ...

#### **Meaning Postulates**

38

- "John is walking quickly"
  - quick'(walk')(john\*)
- "Mary works in Saarbrücken."
  - in'(sb\*)(work'(mary\*))

#### Summary

- First-order logic is nice, but its expressiveness is limited, and some NL phenomena cannot be modelled adequately.
  - modification
  - modification of modifiers
  - higher-order properties

- ...

• Type theory is a generalisation of first-order logic that allows us to represent the semantics of all these expressions.