Semantic Theory Summer 2007 M.Pinkal/ S. Thater

Structure of the Course

- Part I: Sentence semantics
 - Type theoretic semantics, scope, and underspecification
- Part II: Discourse Semantics
 - Anaphora and Coreference, Discourse Representation Theory, Presuppositions
- Part III: Lexical Semantics
 - Event and Frame Semantics, Metaphor and Metonymy, Generative Lexicon

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Central research questions

1. How is sentence meaning appropriately represented?

Predicate Logic

- John walks \rightarrow walk (john)
- John likes Mary \rightarrow like(john, mary)
- John is Bill's brother → brother-of(john, bill)
- John gives Mary the book \rightarrow

give (john, mary, the-book)

 Saarbrücken is closer to paris than Munich is to Vienna → closer-to (sb, paris, m, wien)

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Syntax of FOL [1]

- Non-logical expressions:
 - Individual constants: IC
 - n-place predicate symbols: RC^n (n \ge 0)
- Individual variables: IV
- Terms: $T = IV \cup IC$
- Atomic formulas:

$$- R(t_1,...,t_n)$$
 for $R \in RC^n$, if $t_1, ..., t_n \in T$

-s=t for s, t $\in T$

Predicate Logic

Dolphins are mammals, not fish. ∀d (dolphin(d)→mammal(d) ∧¬fish(d))

Dolphins live in pods. $\forall d (dolphin(d) \rightarrow \exists x (pod(p) \land live-in (d,p))$

Dolphins give birth to one baby at a time. $\forall d (dolphin(d) \rightarrow \forall x \forall y \forall t (give-birth-to (d,x,t) \land give-birth-to (d,y,t) \rightarrow x=y)$

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Syntax of FOL [2]

- FOL formulas: The smallest set *For* such that:
 - All atomic formulas are in For
 - If A, B are in *For*, then so are \neg A, (A \land B), (A \lor B), (A \rightarrow B), (A \leftrightarrow B)
 - If x is an individual variable and A is in *For*, then $\forall xA$ and $\exists xA$ are in *For*.

Semantics of FOL [1]

- Model structures for FOL: M = <U, V>
 - U (or U_M) is a non-empty universe (domain of individuals)
 - V (or V_M) is an interpretation function, which assigns individuals (\in U_M) to individual constants and n-ary relations between individuals (\in U_Mⁿ) to n-place predicate symbols.
- Assignment function for variables g: $IV \rightarrow U_M$

Semantics of FOL [2]

• Interpretation of terms (with respect to a model structure M and a variable assignment g):

[[α]] ^{M,g} = V_M(α), if α is an individual constant

[[α]] ^{M,g} = g(α), if α is a variable

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Semantics of FOL [3]

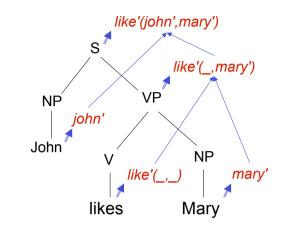
 Interpretation of formulas (with respect to model structure M and variable assignment g):

	$[[R(t_1,, t_n)]]^{M,g} = 1$	iff	{[[t₁]] ^M	$M^{g},, [[t_n]] M^{g} \rangle \in V_M(R)$			
	[[s=t]] ^{M,g} = 1		iff	[[s]] ^{M,g} = [[t]] ^{M,g}			
	$[[\neg \phi]]^{M,g} = 1$		iff	$[[\phi]]^{M,g} = 0$			
	$[[\phi \land \psi]]^{M,g} = 1$	iff	[[φ]] ^{Μ,g}	= 1 and [[ψ]] ^{M,g} = 1			
	$[[\phi \lor \psi]]^{M,g} = 1$	iff	[[φ]] ^{Μ,g}	= 1 or [[ψ]] ^{M,g} = 1			
	$[[\exists x \phi]]^{M,g} = 1$		iff	there is $a \in U_M$ such that [[ϕ			
	$]]^{M,g[x/a]} = 1$						
	$[[\forall x \phi]]^{M,g} = 1$	iff	for all a	a∈U _M : [[φ]] ^{M,g[x/a]} = 1			
	g[x/a] is the variable assignment which is identical with g						
1	except that it assigns the individual <i>a</i> to the variable x.						

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Semantics of FOL [4]

 Formula A is true in the model structure M iff [[A]]^{M,g} = 1 for every variable assignment g.



1.

2.

- 1. How is sentence meaning appropriately represented?
- 2. How is sentence meaning composed out of word meaning and syntactic information?

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

A Challenge for Semantic Composition

Every student presented a paper $\forall d (student(d) \rightarrow \exists p (paper(p) \land present(d,p)))$

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Two Problems

Semantics is not that simple

Syntax is not that simple

Structure of the Course

- Part I: Sentence semantics
 - Type theoretic semantics, scope, and underspecification

Every student presented a paper

 $\forall d (student(d) \rightarrow \exists p (paper(p) \land present(d, p)))$

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Central research questions

- 1. How is sentence meaning appropriately represented?
- 2. How is sentence meaning composed out of word meaning and syntactic information?
- 3. How does sentence meaning interact with context, yielding the intended utterance information?
- 4. How are the meanings of sequences of utterances in a text or in a dialogue composed to semantic discourse representations?

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Semantic context dependence

- · Deictic expressions point to objects in the physical / visual utterance situation:
 - I, you, here, this
- Anaphoric expressions refer to objects in the linguistic context
 - he, she, it, his, her, one ("the one you are holding")

 In text and discourse, different types of noun phrases collaborate to establish referential chains, which establish connectivity.

A professor owns a book. He likes the book.

xyzu	
professor(x) book(y) own(x, y) z = x u = y like(z, u)	

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Central research questions

- 1. How is sentence meaning appropriately represented?
- 2. How is sentence meaning composed out of word meaning and syntactic information?
- 3. How does sentence meaning interact with context, yielding the intended utterance information?
- 4. How are the meanings of sequences of utterances in a text or in a dialogue composed to semantic discourse representations?
- 5. How can we infer the relevant information in the respective situation from the utterance information?

Semantics and Inference

- Have you ever been in France?
- I was in Paris last year.
- Does Bill like lamb chops?
- Bill is a vegetarian.
- Which Airlines buy planes from Airbus?
- Airbus sells 5 A 380 planes to China Southern.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Semantics of FOL [4]

- Formula A is true in the model structure M iff [[A]]^{M,g} = 1 for every variable assignment g.
- A model structure M satisfies a set of formulas Γ (or: M is a model of Γ) iff every formula A∈Γ is true in M.
- A set of formulas Γ entails formula A (Γ |=
 A) iff A is true in every model of Γ.

- Available tools for logical inference:
 - theorem provers: check entailment, validity, and unsatisfiability
 - model builders: check satisfiability, compute models
 - model checkers: determine whether model satisfies formula
- Textual inference/entailment

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Central research questions

- 1. How is sentence meaning appropriately represented?
- 2. How is sentence meaning composed out of word meaning and syntactic information?
- 3. How does sentence meaning interact with context, yielding the intended utterance information?
- 4. How are the meanings of sequences of utterances in a text or in a dialogue composed to semantic discourse representations?
- 5. How can we infer the relevant information in the respective situation from the utterance information?
- 6. How can word meaning be appropriately represented and organised?
- 7. How does word meaning interact with sentence semantics?
- 8. How is word meaning acquired in an efficient way?