1 Type theory: Semantics

Let U is a non-empty set of entities. For every type τ , the domain of possible denotations D_{τ} is given by:

$$- D_e = U$$

$$- D_t = \{0, 1\}$$

 $-D_{\langle \sigma, \tau \rangle}$ is the set of functions from D_{σ} to D_{τ} .

A model structure is a pair $M = \langle U_M, V_M \rangle$ such that

- U_M is a non-empty set of individuals
- $-V_M$ is a function assigning every non-logical constant of type τ a member of D_{τ} .

Interpretation:

- $[\![\alpha]\!]^{M,g} = V_M(\alpha)$ if α is a constant
- $[\![\alpha]\!]^{M,g} = g(\alpha)$ if α is a variable

$$- \ \llbracket \alpha(\beta) \rrbracket^{M,g} = \llbracket \alpha \rrbracket^{M,g}(\llbracket \beta \rrbracket^{M,g})$$

- $[\![\lambda v \alpha]\!]^{M,g} = \text{that function } f: D_{\sigma} \to D_{\tau} \text{ such that for all } a \in D_{\sigma}, f(a) = [\![\alpha]\!]^{M,g[v/a]}$ (for v a variable of type σ)
- $\left[\!\left[\alpha = \beta\right]\!\right]^{M,g} = 1 \text{ iff } \left[\!\left[\alpha\right]\!\right]^{M,g} = \left[\!\left[\beta\right]\!\right]^{M,g}$
- $[\![\neg \phi]\!]^{M,g} = 1 \text{ iff } [\![\phi]\!]^{M,g} = 0$
- $\llbracket \phi \land \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 1 \text{ and } \llbracket \psi \rrbracket^{M,g} = 1$
- $\ [\![\phi \lor \psi]\!]^{M,g} = 1 \text{ iff } [\![\phi]\!]^{M,g} = 1 \text{ or } [\![\psi]\!]^{M,g} = 1$
- $\llbracket \phi \to \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 0 \text{ or } \llbracket \psi \rrbracket^{M,g} = 1$
- $[\exists v \phi]^{M,g} = 1$ iff there is an $a \in U_{\tau}$ such that $[\![\phi]\!]^{M,g[v/a]} = 1$ (for v a variable of type τ)
- $[\![\forall v \phi]\!]^{M,g} = 1$ iff for all $a \in U_{\tau}, [\![\phi]\!]^{M,g[x/a]} = 1$ (for v a variable of type τ)

2 Type theory: Lexicon

- (a) Proper names: John $\Rightarrow \lambda F.F(j^*)$
- (b) Determiners: every $\Rightarrow \lambda F \lambda G \forall x. (F(x) \rightarrow G(x))$ $a \Rightarrow \lambda F \lambda G \exists x. (F(x) \land G(x))$ $no \Rightarrow \lambda F \lambda G \neg \exists x. (F(x) \land G(x))$
- (c) Most content words are simply analysed as constants, but somtimes the the semantics of a word can be represented more precisely by a complex term (e.g., transitive verbs or adjectives).

3 Nested Cooper Storage

Transitive verbs are analysed as constants of type $\langle \langle \langle e, t \rangle, t \rangle, \langle e, t \rangle \rangle$.

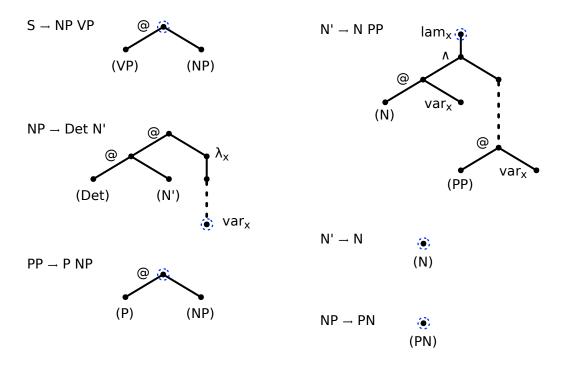
(a) Storage:

$$\begin{array}{ccc} B \Rightarrow \langle \gamma, \Gamma \rangle & B \text{ is an NP node} \\ \hline B \Rightarrow \langle \lambda P. P(x_i), \{\langle \gamma, \Gamma \rangle_i\} \rangle & i \in \mathbf{N} \text{ is a new index} \end{array}$$

(b) Retrieval:

$$\begin{array}{rcl} A & \Rightarrow & \langle \alpha, \Delta \cup \{ \langle \gamma, \Gamma \rangle_i \} \rangle & A \text{ is any sentence node} \\ \hline A & \Rightarrow & \langle \gamma(\lambda x_i . \alpha), \Delta \cup \Gamma \rangle \end{array}$$

4 Dominance graphs: Semantics construction



5 DRT: Syntax and Semantics

A discourse representation structure (DRS) K is a pair $\langle U_K, C_K \rangle$ where

- U_K is a set of discourse referents
- C_K is a set of conditions.

Conditions:

$R(u_1,\ldots,u_n)$	R is an <i>n</i> -place relation, $u_i \in U_K$
u = v	$u, v \in U_K$
u = a	$u \in U_K$, a a proper name
$K_1 \Rightarrow K_2$	K_1 and K_2 DRSs
$K_1 \lor K_2$	K_1 and K_2 DRSs
$\neg K_1$	K_1 is a DRS

6 DRT: Embedding, verifying embedding

Let U_D be a set of discourse referents, $K = \langle U_K, C_K \rangle$ a DRS with $U_K \subseteq U_D$, $M = \langle U_M, V_M \rangle$ a model structure of first-order predicate logic that is suitable for K. An *embedding* of U_D into M is a (partial) function from U_D to U_M that assigns individuals from U_M to discourse referents.

An embedding f verifies the DRS K in M $(f \models_M K)$ iff

(a) $U_K \subseteq \text{Dom}(f)$ and

(b) f verifies each condition $\alpha \in C_K$.

f verifies a condition α in M (f \models_M \alpha) in the following cases:

$f\models_M R(u_1,\ldots,u_n)$	iff $\langle f(u_1), \ldots, f(u_n) \rangle \in V_M(R)$
$f \models_M u = v$	$\inf f(u) = f(v)$
$f \models_M u = a$	$\text{iff } f(u) = V_M(a)$
$f\models_M K_1 \Rightarrow K_2$	iff for all $g \supseteq_{U_{K_1}} f$ such that $g \models_M K_1$,
	there is $h \supseteq_{U_{K_2}} g$ such that $h \models_M K_2$
$f \models_M \neg K_1$	iff there is no $g \supseteq_{U_{K_1}} f$ such that $g \models_M K_1$
$f\models_M K_1 \vee K_2$	iff there is a $g_1 \supseteq_{U_{K_1}} f$ such that $g_1 \models_M K_1$,
	or there is a $g_2 \supseteq_{U_{K_2}} f$ such that $g_2 \models_M K_2$.

7 Presuppositions (van der Sandt)

A proto-DRS is a triple $\langle U_K, C_K, A_K \rangle$, where

- U_K is a set of discourse referents
- $-C_K$ is a set of conditions
- $-A_K$ is a set of "anaphoric" (alpha-) DRSs.

8 Resolution of α -DRSs

Let K and K' be proto-DRSs such that K' is a sub-DRS of K. Let $\gamma = \alpha x K_s$ be an alpha-free alpha-DRS in K', and let K_t be a sub-DRS of K that is accessible for γ .

- (a) Accommodation: Remove γ from K', and extend K_t with U_{K_s} and C_{K_s} .
- (b) Binding: Let further $y \in U_{K_t}$ be a discourse referent that is suitable for γ . Then remove γ from K', and extend K_t with U_{K_s} and C_{K_s} and the condition x = y.