
1

Semantic Theory

Lecture 5:
Scope ambiguities

M. Pinkal / A. Koller

Summer 2006

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 2

The story so far

• We want:

– logic-based semantic representations that capture the

truth conditions of a sentence

• type theory, tense & modal logic, ...

– compositional semantics construction

• lambdas

• This works pretty well up to this point!

• And we could envisage that the system could be

conservatively extended to deal with the rest of

semantics too.

2

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 3

Some basic rules

• Rule of functional application:

• Rule of non-branching nodes:

A

B C

B ⇒ β: <σ, τ>

C ⇒ γ:σ

A ⇒ β(γ): τ

B ⇒ β: σ

C ⇒ γ: <σ, τ>

A ⇒ γ(β): τ

or

A

B

B ⇒ β: τ

A ⇒ β: τ

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 4

Some basic rules

• Rule of lexical nodes:

The semantic representation β for the word "a" is

supplied by the lexicon.

A

a A ⇒ β: τ

3

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 5

An example

S

NP VP

DET N V

Every student works

λFλG∀x(F(x)→ G(x)) student' work'

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 6

An example

S

NP VP

DET N V

Every student works

(λFλG∀x(F(x)→ G(x)))(student')

⇔β λG∀x(student'(x)→ G(x))

work'

4

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 7

An example

S

NP VP

DET N V

Every student works

λG∀x(student'(x)→ G(x)) work'

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 8

An example

S

NP VP

DET N V

Every student works

(λG∀x(student'(x)→ G(x)))(work')

⇔β ∀x(student'(x)→ work(x))

5

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 9

However ...

• ... perhaps we made an assumption that is not generally

correct!

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 10

What does this mean?

• "Now we've got at least one city with all seven religions."

6

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 11

What does this mean?

• Headline: "A search engine for every subject"

(see: http://itre.cis.upenn.edu/~myl/languagelog/archives/002835.html)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 12

What does this mean?

• "Every linguist speaks two languages."

– the same set of languages for each linguist?

7

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 13

What does this mean?

• "During his visit to China, Helmut Kohl intends to visit a

factory for CFC-free refrigerators."

– are there concrete plans for a particular factory?

– are there factories for CFC-free refrigerators in

China?

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 14

What do all these mean?

• "Victoria refuses to trade all her techs."

• "The bishop sent a letter to all priests."

• "It just didn't occur to me that a Barracks might not be

there!"

8

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 15

Scope ambiguities

• Some sentences have more than one possible semantic

representation:

Every student presents a paper.

(a) ∀x[student'(x) → ∃y[paper'(y) ∧ present'(x,y)]]

(b) ∃y[paper'(y) ∧ ∀x[student'(x) → present(x,y)]]

Every student didn't pay attention.

(a) ∀x[student'(x) → ¬pay-attention'(x)]

(b) ¬∀x[student'(x) → pay-attention'(x)]

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 16

Scope ambiguities

• The number of readings of a sentence with scope ambiguities grows

with the number of NPs:

Every researcher of a company saw some sample.

1. ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))

2. ∃z(spl'(z) ∧ ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → see'(x,z))

3. ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))

4. ∃y(cp'(y) ∧ ∃z(spl'(z) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

5. ∃z(spl'(z) ∧ ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

Every researcher of a company saw some samples of most products.

etc.

9

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 17

But: We get only one reading!

VP

λx ∃y paper(y) ∧ present*(y)(x) : <e,t>

TV

λQ Q λx[QQ(λz[present*(z)(x)])] : <<<e,t>,t>,<e,t>>

NP

λG∃y paper(y) ∧ G(y) : <<e,t>,t>

presents
a paper

NP

λH ∀x paper(y) → H(y) : <<e,t>,t>

every student

S

∀x[student(x) → ∃y[paper(y) ∧ present*(y)(x)]] : t

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 18

The problem with scope

• Sentences with scope ambiguities can have multiple

semantic representations for a syntactic constituent.

• The order of the scope-bearing elements (quantifiers,

negation, adverbs, ...) don't necessarily follow the order

of the syntactic combination.

• But: With the approach we have so far, we can only

derive a single semantic representation for each

constituent!

• How can we solve this problem?

10

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 19

Semantic ambiguity: A picture

Sentence Semantic representation
Syntactic

analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation

Semantic representation

Semantic representation

?
?

?

?

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 20

Solving the scope problem: Intuition

NPV

NP VP

S

every student

presents a paper

present*(x2)(x1)

∃y(paper'(y) ∧ present*(y)(x1))

∀x(student'(x) → ∃y(paper'(y) ∧ present*(y)(x)))

11

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 21

The missing reading

• We get one reading of the sentence by deriving the

following terms:

• We could construct the second reading as follows:

∀x(student'(x) → ∃y(paper'(y) ∧ present*(y)(x)))
∃y(paper'(y) ∧ present*(y)(x1))

present*(x2)(x1)

∃y(paper'(y) ∧ ∀x(student'(x) → present*(y)(x)))
∀x(student'(x) → present*(x2)(x))

present*(x2)(x1)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 22

Solving the scope problem: Principles

• Structural ambiguity: We can obtain the two readings by

embedding an intermediate term into the NP

representations in different orders.

• Invariant variable binding: At the same time, we must

make sure that the variables will be bound in the same

way in both readings.

• To a certain degree, we can solve both problems using

lambda abstraction in a clever way.

12

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 23

Using lambda abstraction ("Montague's Trick")

• Intermediate results are all of type t. Abstract over the

correct variable and then apply the NP representation to

the abstracted term.

λG∃y(paper'(y) ∧ G(y))(λx2. λF∀x(student'(x)→ F(x))(λx1.present*(x2)(x1)))
λF∀x(student'(x)→ F(x))(λx1.present*(x2)(x1))

present*(x2)(x1)

λF∀x(student'(x)→ F(x))(λx1. λG∃y(paper'(y) ∧ G(y))(λx2.present*(x2)(x1)))
λG∃y(paper'(y) ∧ G(y))(λx2.present*(x2)(x1))

present*(x2)(x1)

• Problem: How can we do this compositionally?

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 24

Nested Cooper Storage

• One algorithm for deriving such representations

compositionally is Nested Cooper Storage (Keller 1988).

It repairs some problems of the original Cooper Storage

(Cooper 1975).

• Cooper Storages compute the set of all semantic

readings nondeterministically from a single syntactic

analysis:

Sentence
Syntactic

analysis
Semantic representation

Semantic representation

Semantic representation

13

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 25

Nested Cooper Storage: Principles

• The semantic values of syntactic constituents are

ordered pairs 〈α, ∆〉:

– α ∈ WEτ is the content

– ∆ is the quantifier store: a set of NP representations

that must still be applied.

• At NP nodes, we may store the content in ∆.

• At sentence nodes, we can retrieve NP representations

from the store in arbitrary order and apply them to the

appropriate argument positions.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 26

Nested Cooper Storage: Principles

• A syntactic constituent may be associated with multiple

semantic values of this form.

• A lambda term M counts as a semantic representation

for the entire sentence iff we can derive 〈M, ∅〉 as a value

for the root of the syntax tree.

• Hence, there may be more than one valid semantic

representation for the complete sentence.

14

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 27

Nested Cooper Storage: Old Rules

• Rule of functional application:

• Rule of non-branching nodes:

• Rule of lexical nodes:

A

B C

B ⇒ 〈β, ∆〉

C ⇒ 〈γ, Γ〉

A ⇒ 〈β(γ), ∆ ∪ Γ〉

B ⇒ 〈β, ∆〉

C ⇒ 〈γ, Γ〉

A ⇒ 〈γ(β), ∆ ∪ Γ〉

or

A

B

B ⇒ 〈β, ∆〉

A ⇒ 〈β, ∆〉

A

a A ⇒ 〈β, ∅〉

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 28

Nested Cooper Storage: Storage

B ⇒ 〈γ, Γ〉 B is an NP node
———————————————————————

B ⇒ 〈λP.P(xi), {〈γ, Γ〉i}〉 where i ∈ N is a new index

• Using this rule, we can assign more than one semantic

value to an NP node.

• The content of the new semantic value is just a

placeholder of type <<e,t>,t>, and the old value

(including its store) is moved to the store.

15

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 29

Nested Cooper Storage: Retrieval

A ⇒ 〈α, ∆ ∪ {〈γ, Γ〉i}〉 A is any sentence node

——————————————————————

A ⇒ 〈γ(λxiα), ∆ ∪ Γ〉

• Using this rule, we can apply a stored NP.

• At this point, the correct λ-abstraction for the variable

associated with the stored element is introduced.

• The old store Γ is released into the store for A.

• This implements Montague's Trick.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 30

Nested Cooper Storage: Example

Every student presents a paper.

NP
〈λQ∃y[paper'(y) ∧ Q(y)], ∅〉

<λP.P(x2), {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

V
〈λQ Q λx[QQ(λy[present*(y)(x)])], ∅〉

NP
〈λP∀x[student'(x) → P(x)], ∅〉

<λP.P(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1}〉

VP
〈λx[pres*(x2)(x)], {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

S
〈pres*(x2)(x1),

{〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

Every student

presents a paper

(only showing the results

from the blue values here)

16

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 31

Retrieval: Reading 1

• By applying the Retrieval rule, we can derive the following

representation for the S node:

〈pres*(x2)(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

⇒R 〈λQ∃y[paper'(y) ∧ Q(y)](λx2.pres*(x2)(x1)),

{〈λP∀x[student'(x) → P(x)], ∅〉1 }〉

⇒β 〈∃y[paper'(y) ∧ pres*(y)(x1)], {〈λP∀x[student'(x) → P(x)], ∅〉1 }〉

⇒R 〈λP∀x[student'(x) → P(x)](λx1.∃y[paper'(y) ∧ pres*(y)(x1)]), ∅〉

⇒β 〈∀x[student'(x) → ∃y[paper'(y) ∧ pres*(y)(x)]], ∅〉

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 32

Retrieval: Reading 2

• By applying the Retrieval rule, we can derive the following

representation for the S node:

〈pres*(x2)(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

⇒R 〈λP∀x[student'(x) → P(x)] (λx1.pres*(x2)(x1)),

{〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

⇒β 〈∀x[student'(x) → pres*(x2)(x)], {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

⇒R 〈λQ∃y[paper'(y) ∧ Q(y)](λx2.∀x[student'(x) → pres*(x2)(x)]), ∅〉

⇒β 〈∃y[paper'(y) ∧ ∀x[student'(x) → pres*(y)(x)]], ∅〉

17

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 33

Compositionality

• The Compositionality Principle as stated earlier:

The meaning of a complex expression is uniquely

determined by the meanings of its sub-expressions

and its syntactic structure.

• Nested Cooper Storage shows: We can maintain this

principle even in the face of semantic (scope) ambiguity

– as long as we accept that there are multiple meanings

– the principle is also still true if we see NCS as a

nondeterministic process.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 34

Compositionality and NCS

• Two versions of the Compositionality Principle:

– on the level of denotations

– on the level of semantic representations

• Nested Cooper Storage is clearly compositional on the

level of semantic representations -- but in a less

straightforward way than last week's construction

algorithm.

• Compositional on the level of denotations: only in a very

indirect sense.

18

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 35

Other types of scope ambiguities

• Nested Cooper Storage makes the simplifying

assumption that only NPs can participate in scope

ambiguities.

• This is not true in general:

– Every student didn't pay attention.

– Sometimes every student is sleepy.

• NCS can be extended to deal with these, and you'll do it

in the exercises, but we'll do something even better next

week.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 36

Scope islands

• Nested Cooper Storage makes the simplifying

assumption that NPs can be retrieved at all sentence

nodes.

• This is not true in general because sentence-embedding

verbs create scope islands:

– John said that he saw a girl. (2 readings)

– John said that he saw every girl. (1 reading)

• Universal quantifiers may not cross scope island

boundaries; the second sentence doesn't mean "for

every girl x, John said that he saw x".

19

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 37

De dicto/de re ambiguities

• De dicto/de re ambiguities are a special kind of scope

ambiguity in which one scope bearer is a verb:

Helmut Kohl intends to visit a factory.

∃x.factory(x) ∧ intend(hk, ^visit(gs,x)) (de re)

intend(hk, ^∃x.factory(x) ∧ visit(gs,x)) (de dicto)

• We need a more expressive (intensional) logic to

represent the different readings, but the ambiguity is just

a scope ambiguity and can be resolved by NCS.

• Compare the status of "a factory" to the unicorn in

"John seeks a unicorn."

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 38

Scope ambiguities in the real world

• Scope ambiguities are not a very intuitive type of

ambiguity, and are sometimes not seen as a serious

problem for computational linguistics.

• In practice, they are often resolved by context, world

knowledge, preferences, etc.

• We consider them here because they pose a

fundamental challenge for semantics construction.

• If we want "deep" semantic representations that say

something about scope, we must take scope ambiguities

into account.

20

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 39

Scope ambiguities in the real world

• Also, some large-scale grammars (e.g. the English

Resource Grammar) compute semantic representations

with scope.

• The ERG analyses all NPs as scope bearers to keep the

grammar simple. (This is not necessarily correct: proper

names, definites, etc.)

• Median number of scope readings in the Rondane

corpus: 55.

(But: The median number of semantic equivalence

classes is only 3!)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 40

Conclusion

• Last week's type-driven semantics construction is a nice

first step.

• But it is fundamentally unable to deal with semantically

ambiguous sentences.

• Scope ambiguity: Application order of NP

representations can be different from syntactic structure.

• Nested Cooper Storage: Equip semantic representations

with a quantifier store to allow flexible application of

quantifiers; multiple semantic representations per

syntactic constituents allowed.

