Semantic Theory

Lecture 4:

Further topics in sentence semantics

M. Pinkal / A. Koller

Summer 2006

Semantics of λ-expressions

- If $\alpha \in \mathrm{WE}_{\tau}, v \in \operatorname{Var}_{\sigma}$, then $[[\lambda v \alpha]]{ }^{M, g}$ is that function
$f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}, f(a)=[[\alpha]]{ }^{M, g[v / a]}$
- Notice that of course $f \in \mathrm{D}_{<\sigma, \tau>}$.
- In general: $[[(\lambda v \alpha)(\beta)]]^{\mathrm{M}, \mathrm{g}}=[[\alpha]]^{\mathrm{M}, \mathrm{g}\left[v /[\beta \beta]^{\mathrm{M}, \mathrm{g}}\right]}$

Conversion rules in the λ-calculus

- β-conversion:
$\lambda v \alpha(\beta) \Leftrightarrow{ }^{[\beta /]} \alpha$, if all free variables in β are free for v in α.
- α-conversion: $\lambda v \alpha \Leftrightarrow \lambda v^{\prime\left[v^{\prime} / v\right]} \alpha$, if v^{\prime} is free for v in α.
- η-conversion:

$$
\lambda v \alpha(v) \Leftrightarrow \alpha
$$

The rule which we will use most in semantics construction is β-conversion in the left-to-right direction (β-reduction), which allows us to simplify representations.

Semantics construction

- Every student works.

This week: Conservative extensions

- Semantics construction for further constructions:
- adjectives
- transitive verbs
- Extensions to the logic:
- intensionality
- tense and modality

The problem with adjective semantics
John is a blond criminal criminal(j) ^blond(j) John is an honest criminal criminal(j) ^ honest(j) ?

Another problem with adjective semantics

Adjective classes

- Adjectives can be classified with respect to the way that they combine the adjective and noun meanings:
- intersective adjectives (blond, carnivorous, ...): || blond $\mathrm{N}||=||b l o n d|| \cap|| N|\mid$
- subsective adjectives (skillful, typical, ...):
\| skillful $N\|\subseteq\| N \|$
- privative adjectives (past, fake, ...): || past $\mathrm{N}\|\cap\| \mathrm{N} \|=\varnothing$
- there are also other non-subsective adjectives that are not privative (alleged, ...)

A new problem with adjectives

- We want the best of both worlds:
- compositional semantics construction
- explicit and meaningful final semantic representations
- We don't have this yet for intersective adjectives.
- We can get this in two different ways:
- use meaning postulates
- use more explicit lambda terms

Meaning postulates

- Characterise the meaning of a word by using logical axioms.
- Meaning postulate for intersective adjectives:
$-\exists P \forall Q \forall x$ blond $(Q)(x) \leftrightarrow P(x) \wedge Q(x)$
- These axioms would be part of our background knowledge.
- For example, we could infer "criminal(john)" from "blond(criminal)(john)" and this axiom.
- More generally applicable for other words.

More explicit lambda terms

- In the special case of intersective adjectives, we can also do it by assigning the word a more elaborate lambda term:
$-\lambda P \lambda x\left(P(x) \wedge\right.$ blond $\left.^{*}(x)\right)$
- This will beta-reduce to the formula we want.
- Note that the symbol "blond*" has type <e,t> here (and should denote the set of blond individuals in the universe), but the entire semantic representation of the word "blond" has type <<e,t>,<e,t>>.

Back to nouns and verbs

Every student presented a paper

Quantificational NPs and transitive verbs

A composition problem:

- every student $\Rightarrow \lambda F \forall x($ student $(x) \rightarrow F(x)): \ll e, t>, t>$
- a paper $\Rightarrow \lambda G \exists y(\operatorname{paper}(\mathrm{y}) \wedge G(\mathrm{y})): \ll e, t>, \mathrm{t}>$
- presented \Rightarrow present: <e,<e,t>>

An attempt at a solution

Raise the type of the first-order relation:

```
        present: <<<e,t>,t>,<e,t>>
```

VP

Spelling out the meaning of a transitive verb

- But now our semantic representation no longer betareduces to a FOL formula!
$\forall x$ student $(x) \rightarrow \operatorname{present}(\lambda G \exists y \operatorname{paper}(y) \wedge G(y))(x)$
- Same problem as above, same solution.
- Represent transitive verbs like "present" as follows:
$\lambda Q \lambda x[Q(\lambda y[p r e s e n t *(y)(x)]]]: \lll e, t>, t>,<e, t \gg$, where present*: <e,<e,t>>
- This is hard to read, but it does the trick.

Spelling out the meaning of a transitive verb

Non-referential arguments

- John finds a unicorn $\mid=\exists x$ unicorn' (x)
- John seeks a unicorn $\mid \neq \exists x$ unicorn'(x)
- Subject position of verbs is always referential.
- Direct object position of some verbs is referential, of some other verbs isn't.
- That is, not all transitive verbs can be spelled out in the same way as "present" or "find".
- I.e. there are linguistic reasons why the monster type for transitive verbs makes sense.

Let's look back at compositionality

- Principle of Compositionality:
- The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and its syntactic structure.
- But if we assume this, we should be allowed to exchange sub-expressions with the same interpretation without changing the meaning ("salva veritate" substitutability).

Substitutability

- From the denotational version of the Principle of Compositionality, a substitution principle follows:
- If A is sub-expression in sentence C, and A and B have identical denotation, then A can be replaced by B in C without affecting C's truth value.

George W. Bush is married to Laura Bush.
"George W. Bush" = "the American president"
Therefore:
The American president is married to Laura Bush.

Substitutability?

In 1977, George W. Bush married Laura Bush.
"George W. Bush" = "the American president"
Therefore:
In 1977, the American president married Laura Bush.
??

Substitutability?

In 1977, the American president was a Democrat.
"George W. Bush" = "the American president"
Therefore:
In 1977, George W. Bush was a Democrat. ???

Substitutability?

By constitution, the American president is the Supreme Commander of the Armed Forces.
"George W. Bush" = "the American president"
Therefore:
By constitution, George W. Bush is the Supreme Commander of the Armed Forces. ???

Substitutability?

The following sentences are true:

- The weather is bad
- A semantics lecture is taking place
$-2+2=4$

How about these?

- It is not the case that ...
- Necessarily ...
- Yesterday, it was the case that ...
- John believes that ...

The lesson

- There are expressions that our semantic representations assign the same interpretation, but which cannot always be exchanged for each other without changing the meaning of the sentence.
- Two possibilities:
- we have to give up compositionality
- there are meaning distinctions that our representations don't capture

Extensions vs. intensions

- Two concepts have the same extension if they have the same interpretations:
- "semantics lecture taking place" and "2 + 2 = 4" are both true right now
- "George W. Bush" and "the US president" refer to the same individual
- However, extensionally equal concepts may still have different "senses": General truths vs. statements that may become false; can believe in one but not the other...
- These senses are also called intensions.

Intensions are everywhere

- If we ignore intensions, we will get into trouble with substitutability in a lot of contexts:
- propositional attitudes: verbs like "believe", "know", "doubt", "desire", ...
- verbs of saying: "say", "claim", ...
- tensed sentences (past, future, ...), temporal adverbs (sometimes, always, lately, tomorrow) and connectives (before, during)
- modal adverbs (necessarily, perhaps), modal verbs (can, may, must, ...), counterfactual conditionals

Modelling intensions

- In order to capture the meaning of a NL expression completely, we must extend the logic to talk about intensions.
- Standard technique:
- Introduce the concept of a "possible world";
- define the extension of a term in each possible world;
- the intension is the mapping of possible worlds to extensions.

Formal models of intensionality

- Intensional Logic (IL): Extend type theory with
- mechanisms for talking about possible worlds (modal logic)
- mechanisms for talking about time (temporal logic)
- mechanisms for abstracting over possible worlds
- Montague Grammar: use IL in semantics construction (basic ideas as presented here)
- We will now look into modal and temporal aspects in some more detail.

Propositional Modal Logic

- Formulas of propositional modal logic: The smallest set such that:
- Propositional constants are in For
- If A, B are in For, so are $\neg A,(A \wedge B),(A \vee B)$, $(A \rightarrow B),(A \leftrightarrow B), € A, \diamond A$

Model Structure

- Model structure for propositional modal logic:
$\mathrm{M}=<\mathrm{W}, \mathrm{V}>$
- W is a non-empty set (set of possible worlds)
- V is value assignment function, which assigns each propositional constant a function $\mathrm{W} \rightarrow\{0,1\}$ For $\mathrm{V}(\mathrm{p})(\mathrm{w})$ we also write $\mathrm{V}_{\mathrm{w}}(\mathrm{p})$ or $\mathrm{V}_{\mathrm{M}, \mathrm{w}}(\mathrm{p})$.

Interpretation

- Interpretation of formulas (with respect to model structure M and possible world w):
$[[p]]^{M, w}=V_{M}(p)(w)$, if p propositional constant
$[[\neg \varphi]]^{M, w}=1 \quad$ iff $\quad[[\varphi]]^{M, w}=0$
$[[\varphi \wedge \psi]]^{\mathrm{M}, \mathrm{w}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{w}}=1$ and $[[\psi]]^{\mathrm{M}, \mathrm{w}}=1$
$[[\varphi \vee \psi]]^{M, w}=1 \quad$ iff $\quad[[\varphi]]^{M, w}=1$ or $[[\psi]]^{M, w}=1$
$[[\varphi \rightarrow \psi]]^{M, w}=1 \quad$ iff $\quad[[\varphi]]^{M, w}=0$ or $[[\psi]]^{M, w}=1$
$[[\varphi \leftrightarrow \psi]]^{\mathrm{M}, \mathrm{w}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{w}}=[[\psi]]^{\mathrm{M}, \mathrm{w}}$
$[[\diamond \varphi]]^{\mathrm{M}, \mathrm{w}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{w}^{\prime}}=1$ for at least one $w^{\prime} \in \mathrm{W}$
$[[€ \varphi]]^{M, w}=1 \quad$ iff $\quad[[\varphi]]^{M, w^{\prime}}=1$ for all $w^{\prime} \in W$

Propositional modal logic

P
$\diamond P$
$€ P$
$€(P \vee Q \vee R)$ $P \rightarrow Q$

Substitutability?

Let the following sentences be true:

- The weather is bad
- A semantics lecture is taking place.
$-2+2=4$

It is not the case that ...
Necessarily ...
Yesterday, it was the case that ...
John believes that ...

Propositional Tense Logic

- Formulas of propositional tense logic: The smallest set such that:
- Propositional constants are in For
- If A, B are in For, so are $\neg A,(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B), F A$, GA, PA, HA

FA - "it will at some stage be the case that A "
GA - "it is always going to be the case that A"
PA - "it was at some stage the case that A "
HA - "it always has been the case that A"

Model Structure

- Model structure for propositional tense logic (with linear time):
$\mathrm{M}=<\mathrm{T},<, \mathrm{V}>$
- T is non-empty set (set of points in time)
$-<$ is a strict ordering relation on T
- V is value assignment function, which assigns each propositional constant a function $\mathrm{T} \rightarrow\{0,1\}$
For $\mathrm{V}(\mathrm{p})(\mathrm{t})$ we also write $\mathrm{V}_{\mathrm{t}}(\mathrm{p})$ or $\mathrm{V}_{\mathrm{M}, \mathrm{t}}(\mathrm{p})$

Interpretation

- Interpretation of formulas (with respect to model structure M and time t):
$[[p]]^{M, t}=V_{M}(p)(t)$, if p propositional constant
$[[\neg \varphi]]^{M, t}=1 \quad$ iff $\quad[[\varphi]]^{M, t}=0$
$[[\varphi \wedge \psi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=1$ and $[[\psi]]^{\mathrm{M}, \mathrm{t}}=1$
$[[\varphi \vee \psi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=1$ or $[[\psi]]^{\mathrm{M}, \mathrm{t}}=1$
$[[\varphi \rightarrow \psi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=0$ or $[[\psi]]^{\mathrm{M}, \mathrm{t}}=1$
$[[\varphi \leftrightarrow \psi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=[[\psi]]^{\mathrm{M}, \mathrm{t}}$
$[[F \varphi]]]^{M, t}=1 \quad$ iff $\left.\quad[[\varphi]]\right]^{M, t^{\prime}}=1$ for at least one $t^{\prime}>t$
$[[\mathbf{G} \varphi]]^{\mathrm{M}, \mathrm{t}}=1 \mathrm{iff} \quad[[\varphi]]_{\mathrm{M}, \mathrm{t}^{\prime}}=1$ for all $\mathrm{t}^{\prime}>\mathrm{t}$
$[[\mathbf{P} \varphi]]^{\mathrm{M}, \mathrm{t}}=1$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}^{\prime}}=1$ for at least one $\mathrm{t}^{\prime}<\mathrm{t}$
$[[H \varphi]]^{M, t}=1$ iff $\quad[[\varphi]]^{M, t^{\prime}}=1$ for all $\mathrm{t}^{\prime}<\mathrm{t}$

Propositional tense logic

FP
HQ
$P(P \wedge F Q)$
$F P \vee P \vee P P$

Substitutability?

Let the following sentences be true:

- The weather is bad
- A semantics lecture is taking place.
$-2+2=4$

It is not the case that ...
Necessarily ...
Yesterday, it was the case that ...
John believes that ...

Propositional Logic with Tense and Modality

- Syntax: Tense + modal operators
- Model structure: $\mathrm{M}=<\mathrm{W}, \mathrm{T},<, \mathrm{V}>$ with
$V(p): W \times T \rightarrow\{0,1\}$
alternative notation: $\mathrm{V}_{\mathrm{M}, \mathrm{w}, \mathrm{t}}(\mathrm{p})$
- Interpretation with respect to M, w and t .

Semantics for FOL with tense and modalities

- Model structure: $\mathrm{M}=<\mathrm{U}, \mathrm{W}, \mathrm{T},<, \mathrm{V}>$
$-\mathrm{V}\left(\right.$ or $\left.\mathrm{V}_{\mathrm{M}}\right)$ is value assignment function for non-logical constants, which assigns
- individuals $\left(\in \mathrm{U}_{\mathrm{M}}\right)$ to individual constants
- functions $\mathrm{W} \times \mathrm{T} \rightarrow \mathrm{U}^{\mathrm{n}}$ to n -place relational constants
- Assignment function for variables $\mathrm{g}: \mathrm{IV} \rightarrow \mathrm{U}_{\mathrm{M}}$

Interpretation of Terms

- Interpretation of terms (with respect to model structure M and variable assignment g):
$[[\alpha]]^{M, g, w, t}=V_{M}(\alpha)$, if α individual constant
$[[\alpha]]{ }^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}}=\mathrm{g}(\alpha)$, if α variable
- Notice: Interpretation of terms doesn't depend on the world and time.

Interpretation

- Interpretation of formulas (with respect to model structure M, variable assignment g , world w and time t):

$\left[\left[R\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)\right]\right]^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}}=1 \mathrm{iff}$		$\left\langle\left[\left[t_{1}\right]\right]^{M, g, w, t}, \ldots,\left[\left[t_{n}\right]\right]^{M, g, w, t}\right\rangle \in V_{M}(R)(w, t)$
$[[\mathrm{s}=\mathrm{t}]]^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}}=1$	iff	$[[\mathrm{s}]]^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}}=[[\mathrm{t}]]^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}}$
$[[\neg \varphi]]^{M, g, w, t}=1$		iff $\quad\left[[\varphi]^{(1, g, w, t}=0\right.$
$[[\varphi \wedge \psi]]^{M, g, w, t}=1$ etc.	iff	$[[\varphi]]^{M, g, w, t}=1$ and $[[\psi]]^{M, g, w, t}=1$
$\left[[\exists \mathrm{X} \varphi]^{\mathrm{M}, \mathrm{g}, \mathrm{w,t}}=1\right.$	iff	there is $a \in \mathrm{U}_{\mathrm{M}}$ such that $[[\varphi]]^{\mathrm{M}, g[/ / a], \mathrm{w}, \mathrm{t}}=1$
$[[\forall X \varphi]]^{M, g, w, t}=1$	iff	for all $a \in \mathrm{U}_{\mathrm{M}}:[[\varphi]]^{\mathrm{M}, \mathrm{g}[\times / \mathrm{a}], \mathrm{w}, \mathrm{t}}=1$
$[[F \varphi]]^{M, g, w, t}=1$	iff	[[¢]] ${ }^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}^{\prime}=1}$ for at least one $\mathrm{t}^{\prime}>\mathrm{t}$
etc.		
$[[€ A]]$ M,g,w,t $=1$	iff	$[[\varphi]] \mathrm{M,g,w}^{\prime}, t=1$ for all $w^{\prime} \in W$, etc.

Non-Substitutability: Explained!

In 1977, George W. Bush married Laura Bush.
"George W. Bush" = "the American president"
Therefore: In 1977, the American president married Laura Bush. ??

George W. Bush has always been married to Laura Bush.

George W. Bush is the American president.
Therefore: The American president has always been married to Laura Bush ???

Non-Substitutability: Explained!

By constitution, the American president is the Supreme Commander of the Armed Forces.
George W. Bush is the American president.
Therefore: By constitution, George W. Bush is the Supreme Commander of the Armed Forces. ???

Conclusion

- We extended our type theoretical semantics construction algorithm in two ways:
- semantics construction for some new semantic phenomena (adjectives, transitive verbs)
- extension of FOL with intensional constructs (modality, tense)
- Type theory + tense + modality + intensional abstractions = Intensional Logic (not discussed here).

