
1

Semantic Theory

Lecture 3:
Elementary semantics construction

M. Pinkal / A. Koller

Summer 2006

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 2

Last week: Type theory

• Expressive limits of FOL

– John is a blond/honest/alleged criminal.

– Bill is blond. Blond is a hair colour.

• Solution: Generalise FOL to type theory

– basic types e, t

– functional types <σ, τ>

– build logic from functional application and the usual

logical connectives (over higher-order constants and

variables).

2

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 3

Building well-formed expressions

Bill drives fast.

drive: <e,t> fast: <<e,t>,<e,t>>

Bill: e fast(drive): <e,t>

fast(drive)(bill): t

Mary works in Saarbrücken

mary: e work: <e,t> in: <e,<t,t>> sb: e

work(mary): t in(sb): <t,t>

in(sb)(work(mary)): t

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 4

Type-theoretic semantics [1]

• Let U be a non-empty set of entities.

• The domain of possible denotations Dτ for every type τ is

given by:

– De = U

– Dt = {0,1}

– D<σ, τ> is the set of all functions from Dσ to Dτ

3

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 5

Type-theoretic semantics [2]

• A model structure for a type theoretic language:

M = <U, V>, where

– U (or UM) is a non-empty domain of individuals

– V (or VM) is an interpretation function, which assigns

to every member of Conτ an element of Dτ.

• Variable assignment g assigns every variable of type τ a

member of Dτ.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 6

Type-theoretic semantics [3]

Interpretation (with respect to model structure M and variable

assignment g):

[[α]] M,g = VM(α), if α constant

[[α]] M,g = g(α), if α variable

[[α(β)]]M,g = [[α]]M,g([[β]]M,g)

[[¬ϕ]]M,g = 1 iff [[ϕ]]M,g = 0

[[ϕ ∧ ψ]]M,g = 1 iff [[ϕ]]M,g = 1 and [[ψ]]M,g = 1, etc.

If v∈Varτ, [[∃vϕ]]M,g = 1 iff there is a∈ Dτ such that [[ϕ]]M,g[v/a] = 1

If v∈Varτ, [[∀vϕ]]M,g = 1 iff for all a∈ Dτ : [[ϕ]] M,g[v/a] = 1

[[α=β]]M,g = 1 iff [[α]]M,g = [[β]]M,g

4

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 7

Sets as characteristic functions

• One trick we've applied a lot was to model sets by their

characteristic functions.

• A function of type <σ, t> maps each member of Dσ to

true or false.

• See this as representing a subset of Dσ (namely, the set

of members of Dσ that are mapped to true).

• Example: "blond" is a constant of type <e,t>. It can be

seen as characterising the set of blond individuals (of

type e).

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 8

Outline

• Elementary semantics construction:

– the principle of compositionality

– compositional semantics construction using type

theory

• Quantified noun phrases: A challenge for

compositionality

• The lambda operator in type theory.

• Things work!

5

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 9

Frege's Principle

... or the Principle of Compositionality:

• The meaning of a complex expression is uniquely

determined by the meanings of its sub-expressions and

its syntactic structure.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 10

Two levels of interpretation

• Semantic interpretation of a NL expression in a logical

framework is a two-step process:

– The NL expression is assigned a semantic

representation

– The semantic representation is truth-conditionally

interpreted.

• Truth-conditional interpretation of logical representations

is strictly compositional.

• We also want this for the process of computing logical

representations from NL expressions.

6

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 11

Some basic rules

• Rule of functional application:

• Rule of non-branching nodes:

A

B C

B ⇒ β: <σ, τ>

C ⇒ γ:σ

A ⇒ β(γ): τ

B ⇒ β: σ

C ⇒ γ: <σ, τ>

A ⇒ γ(β): τ

or

A

B

B ⇒ β: τ

A ⇒ β: τ

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 12

Some basic rules

• Rule of lexical nodes:

The semantic representation β for the word "a" is

supplied by the lexicon.

A

a A ⇒ β: τ

7

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 13

Semantics construction

• John sleeps.

S

NP

PN

John

VP

IV

sleep

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 14

Semantics construction

• John sleeps.

S

NP

PN

john : e

John

VP

IV

sleep : <e,t>

sleep

rule of lexical

nodes

8

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 15

Semantics construction

• John sleeps.

S

NP

john : e

PN

john : e

John

VP

sleep : <e,t>

IV

sleep : <e,t>

sleep

rule of non-

branching nodes

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 16

Semantics construction

• John sleeps.

S

sleep(john) : t

NP

john : e

PN

john : e

John

VP

sleep : <e,t>

IV

sleep : <e,t>

sleep

rule of

functional application

9

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 17

Semantics construction

• John likes Mary.
S

like(mary)(john) : t

NP

john : e

PN

john : e

John

VP

like(mary) : <e,t>

TV

like : <e,<e,t>>

NP

mary : e

PN

mary : e
John

Mary

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 18

Semantics construction

• This looks pretty neat!

• In fact, we will keep the same semantics construction

rules for a little while.

• But ...

10

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 19

Noun phrases and compositionality

∀d (student(d)→ ∃p (paper(p) ∧present(d,p)))

Every student presented a paper

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 20

Noun phrases and compositionality

∀d (student(d)→ ∃p (paper(p) ∧present(d,p)))

Every student presented a paper

11

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 21

Noun phrases and compositionality

John works. work(john)

Somebody works ∃x (work(x))

Every student works ∀x (student(x)→ work(x))

No student works ¬ ∃x (student(x) ∧ work(x))

John and Mary work work(john) ∧ work(mary)

What's the semantic representation of a noun phrase?

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 22

Towards a unified semantics of NPs

John works.

john: e work: <e,t>

work(john): t

Every student works.

every-student: <<e,t>,t> work: <e,t>

every-student(work): t

12

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 23

Towards a unified semantics of NPs

John works.

??? : <<e,t>,t> work: <e,t>

john(work): t

Every student works.

every-student: <<e,t>,t> work: <e,t>

every-student(work): t

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 24

A coverage problem

Swimming is healthy

swimming: <e,t> healthy <<e,t>,t>

healthy(swimming): t

Not smoking is healthy

Driving and drinking is dangerous

John drives and drinks

Some people drive and drink

13

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 25

Summing up the problems

• We have the following kinds of problems:

– We want uniform semantic representations for noun

phrases, and we don't seem to have the syntax to

write them down.

– Some NL expressions seem to require us to say

"an x with the property P".

• So, let's extend the logic.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 26

The solution: λ-abstraction

• a term of type <e,t>

• denotes the property of being "an x such that x drives

and drinks"

• λ-abstraction is an operation that takes an expression

and „opens“ or „re-opens“ specific argument positions by

abstracting over a variable

• The result of abstraction over individual variable x in the

formula drive(x)∧drink(x) results in the complex

predicate λx[drive(x)∧drink(x)].

λx[drive(x)∧drink(x)]

14

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 27

Syntax of λ-abstraction

If α ∈ WEτ , v ∈ Varσ , then λvα∈ WE<σ,τ> .

Notational convention:

The scope of the λ-operator is the smallest WE to its

right. Wider scope must be indicated by brackets.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 28

Example

drive: <e,t> x:e drink: <e,t> x:e

drive(x): t drink(x): t

drive(x)∧drink(x): t

λx[drive(x)∧drink(x)]: <e,t>

15

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 29

Coverage problem: Solved!

Swimming is healthy

Not smoking is healthy

Driving and drinking is dangerous

John drives and drinks

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 30

Semantics of λ-expressions

U

V(drink) is true on

these arguments

V(drive) is true on

these arguments

[[λx[drive(x)∧drink(x)]] is true
on the arguments that make

drive(x)∧drink(x) true.

16

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 31

Semantics of λ-expressions

• If α ∈ WEτ , v ∈ Varσ , then [[λvα]] M,g is that function

f : Dσ → Dτ such that for all a∈ Dσ, f(a) = [[α]] M,g[v/a]

• Notice that of course f ∈ D<σ,τ>.

• In general: [[(λvα)(β)]] M,g = [[α]] M,g[v/ [[β]]M,g]

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 32

A syntactic shortcut for the evaluation of λ-expressions

• By the modified variable assignment, the value of the

argument of the λ-expression is passed through its body

and becomes the value of all occurrences of variables

bound by the λ-operator.

• We obtain the same result, if we first substitute the free

occurrences of the λ-variable in λvα(β) by the argument

β, and only then interpret the result:

– [[λvα(β)]] M,g = [[α]] M,g[v/ [[β]]M,g] to

– [[λvα(β)]] M,g = [[[β/v]α]] M,g

• This is the basic idea behind the λ-calculus.

17

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 33

Variable capturing

• Are λvα(β) and [β/v]α always equivalent?

– λx[drive(x)∧drink(x)](john) ⇒ drive(john)∧drink(john)

– λx[drive(x)∧drink(x)](y) ⇒ drive(y)∧drink(y)

– λx [∀y know(x)(y)] (john) ⇒ ∀y know(john)(y)

– λx [∀y know(x)(y)] (y) ⇒ ∀y know(y)(y)

• Let v, v' be variables of the same type, α any well-

formed expression.

v is free for v' in α iff no free occurrence of v' in α is in

the scope of a quantifier or a λ-operator that binds v.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 34

Conversion rules in the λ-calculus

• β-conversion:

λvα(β) ⇔ [β/v]α , if all free variables in β are free for v in α.

• α-conversion:

λvα ⇔ λv' [v'/v]α , if v' is free for v in α.

• η-conversion:

λv(α(v)) ⇔ α

The rule which we will use most in semantics construction

is β-conversion in the left-to-right direction (β-reduction),

which allows us to simplify representations.

18

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 35

Example

drive: <e,t> x:e drink: <e,t> x:e

drive(x): t drink(x): t

drive(x)∧drink(x): t

john : e λx[drive(x)∧drink(x)]: <e,t>

(λx[drive(x)∧drink(x)])(john) : t

⇒β drive(john) ∧ drink(john) : t

John drives and drinks.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 36

Back to noun phrases

• We were looking for a uniform representation for NPs.

– proper names: could use constants of type e

– quantified NPs: ???

• Solve this problem using lambdas for type raising:

– All NPs are represented as terms of type <<e,t>,t>.

– Interpretation of "John": The property P (of type <e,t>)

belongs to this set if John has it.

– Interpretation of "every student": P belongs to the set

if every student has it.

– and so on

19

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 37

Semantics construction

• John sleeps.

S

(λP.P(john))(sleep) : t

⇒ sleep(john) : t

NP

λP.P(john) : <<e,t>,t>

VP

sleep : <e,t>

VP

sleep : <e,t>

sleep

PN

λP.P(john) : <<e,t>,t>

John

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 38

Semantic representations for NPs

• every student denotes a second-order property (<<e,t>,t>)

which holds of a (first-oder) property ω iff all students are

in ω.

• This semantic information can be straightforwardly

encoded as a lambda term:

λG ∀x(student(x)→ G(x))

• Accordingly, the determiner every can be represented as:

λFλG∀x(F(x)→ G(x))

20

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 39

Semantics construction

• Every student works. S

(λG∀x(student(x)→ G(x)))(work) : t

⇒ ∀x(student(x)→ work(x)) : t

NP

(λFλG∀x(F(x)→ G(x)))(student) : <<e,t>,t>

⇒ λG∀x(student(x)→ G(x)) : <<e,t>,t>

every

VP

work : <e,t>

VP

work : <e,t>

works

N

student : <e,t>
Det

λFλG∀x(F(x)→ G(x)) : <<e,t>,<<e,t>,t>>

student

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 40

More noun phrases

John λG[G(j*)]

Somebody λG ∃xG(x)

A student λG ∃x(student(x) ∧ G(x))

No student λG ¬ ∃x (student(x) ∧ G(x))

John λG[G(j*)]

John and Mary λG[G(j*) ∧ G(m*)]

21

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 41

More determiners

a, some λFλG ∃x(F(x) ∧ G(x))

no λFλG ¬ ∃x (F(x) ∧ G(x))

most most (a constant)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 42

Conclusion

• We wanted compositional semantics construction.

– This turned out to be not so easy for nontrivial

sentences.

– With lambdas, it is easy!

– Breaking through some expressive limits of lambda-

free type theory.

• Lambda abstraction is a very natural and straightforward

extension to lambda-free type theory, and belongs to

standard definitions of type theory.

