„Semantic Theory" SS 06

1 Type theory: Lexicon

(a) Proper names:

John $\Rightarrow \lambda F . F\left(j^{*}\right)$
(b) Determiners:
every $\Rightarrow \lambda F \lambda G \forall x .(F(x) \rightarrow G(x))$
$\mathrm{a} \Rightarrow \lambda F \lambda G \exists x .(F(x) \wedge G(x))$
no $\Rightarrow \lambda F \lambda G \neg \exists x .(F(x) \wedge G(x))$
(c) Most content words are simply analysed as constants (note: transitive verbs get type $\langle\langle\langle e, t\rangle, t\rangle,\langle e, t\rangle\rangle)$. But sometimes, the semantics of a word can be represented more precisely by a complex term, e.g.

- edible $\Rightarrow \lambda P \lambda x \cdot P(x) \wedge \diamond \exists y$.eat ${ }^{*}(x)(y)$
- unmarried $\Rightarrow \lambda P \lambda x . P(x) \wedge \neg \exists y$.is_married_to $(y)(x)$

2 Modal Logic

Terms:

$$
\begin{array}{ll}
\llbracket x \rrbracket^{M, g, w, t}=g(x) & \text { if } x \text { is a variable } \\
\llbracket a \rrbracket^{M, g, w, t}=V_{M}(a) & \text { if } a \text { is a constant } .
\end{array}
$$

Formulas:

$$
\begin{array}{ll}
\llbracket R\left(t_{1}, \ldots, t_{n} \rrbracket^{M, g, w, t}=1\right. & \text { iff }\left\langle\llbracket t_{1} \rrbracket^{M, g, w, t}, \ldots, \llbracket t_{n} \rrbracket^{M, g, w, t}\right\rangle \in V_{M}(R)(w, t) \\
\llbracket t_{1}=t_{2} \rrbracket^{M, g, w, t}=1 & \text { iff } \llbracket t_{1} \rrbracket^{M, g, w, t}=\llbracket t_{2} \rrbracket^{M, g, w, t} \\
\llbracket \neg \varphi \rrbracket^{M, g, w, t}=1 & \text { iff } \llbracket \varphi \rrbracket^{M, g, w, t}=0 \\
\llbracket \varphi \wedge \psi \rrbracket^{M, g, w, t}=1 & \text { iff } \llbracket \varphi \rrbracket^{M, g, w, t}=1 \text { and } \llbracket \psi \rrbracket^{M, g, w, t}=1 \\
\llbracket \varphi \vee \psi \rrbracket^{M, g, w, t}=1 & \text { iff } \llbracket \varphi \rrbracket^{M, g, w, t}=1 \text { or } \llbracket \psi \rrbracket^{M, g, w, t}=1 \\
\llbracket \exists x \varphi \rrbracket^{M, g, w, t}=1 & \text { iff there is } a \in U_{M}, \llbracket \varphi \rrbracket^{M, g[x / a], w, t}=1 \\
\llbracket \forall x \varphi \rrbracket^{M, g, w, t}=1 & \text { iff for all } a \in U_{M}, \llbracket \varphi \rrbracket^{M, g[x / a], w, t}=1 \\
\llbracket \square \varphi \rrbracket^{M, g, w, t}=1 & \text { iff for all } w^{\prime} \in W, \llbracket \varphi \rrbracket^{M, g, w, t, w}=1 \\
\llbracket \diamond \varphi \rrbracket^{M, g, w, t}=1 & \text { iff there is } w^{\prime} \in W, \llbracket \varphi \rrbracket^{M, g, w^{\prime}, t}=1 \\
\llbracket \mathbf{F} \varphi \rrbracket^{M, g, w, t}=1 & \text { iff there is } t^{\prime}>t, \llbracket \varphi \rrbracket^{M, g, w, t^{\prime}}=1 \\
\llbracket \mathbf{G} \varphi \rrbracket^{M, g, w, t}=1 & \text { iff for all } t^{\prime}>t \llbracket \varphi \rrbracket^{M, g, w, t^{\prime}}=1 \\
\llbracket \mathbf{P} \varphi \rrbracket^{M, g, w, t}=1 & \text { iff there is } t^{\prime}<t, \llbracket \varphi \rrbracket^{M, g, w, t^{\prime}}=1 \\
\llbracket \mathbf{H} \varphi \rrbracket^{M, g, w, t}=1 & \text { iff for all } t^{\prime}<t, \llbracket \varphi \rrbracket^{M, g, w, t^{\prime}}=1
\end{array}
$$

3 Nested Cooper Storage

Transitive verbs are analysed as constants of type $\langle\langle\langle e, t\rangle, t\rangle,\langle e, t\rangle\rangle$.
(a) Storage:

$$
\begin{array}{ll}
B \Rightarrow\langle\gamma, \Gamma\rangle & B \text { is an NP node } \\
\hline B \Rightarrow\left\langle\lambda P . P\left(x_{i}\right),\left\{\langle\gamma, \Gamma\rangle_{i}\right\}\right\rangle & i \in \mathbf{N} \text { is a new index }
\end{array}
$$

(b) Retrieval:

$$
\begin{aligned}
A \Rightarrow\left\langle\alpha, \Delta \cup\left\{\langle\gamma, \Gamma\rangle_{i}\right\}\right\rangle \quad A \text { is any sentence node } \\
\hline A \Rightarrow\left\langle\gamma\left(\lambda x_{i} \cdot \alpha\right), \Delta \cup \Gamma\right\rangle
\end{aligned}
$$

4 Dominance graphs: Semantics construction

$S \rightarrow$ NP VP:

$\mathrm{VP} \rightarrow$ TV NP:

$\mathrm{NP} \rightarrow \operatorname{Det} \mathrm{N}^{\prime}:$

$$
\mathrm{VP} \rightarrow \mathrm{IV}: \quad \text { IV }
$$

$$
\mathrm{NP} \rightarrow \mathrm{PN}: \quad \quad \text { PN }
$$

$$
\mathrm{N}^{\prime} \rightarrow \mathrm{N}: \quad \quad \text { N }
$$

5 Dominance graphs: Solving

The three rules of the dominance graph solver:
(a) Choice: If a node u has two dominance parents v and w, generate two new dominance graphs containing the edges (v, w) and (w, v), and continue the search for solved forms for both new graphs.
(b) Parent Normalisation: If (u, v) is a dominance edge, and v has a father w over a tree edge, replace (u, v) by (u, w).
(c) Redundancy Elimination: If $e=(u, v)$ is an edge and there is a path from u to v that doesn't use e, delete e from the dominance graph.

6 DRT: Syntax and Semantics

A discourse representation structure (DRS) K is a pair $\left\langle U_{K}, C_{K}\right\rangle$ where

- U_{K} is a set of discourse referents
- C_{K} is a set of conditions.

Conditions:

$$
\begin{array}{ll}
R\left(u_{1}, \ldots, u_{n}\right) & R \text { is an } n \text {-place relation, } u_{i} \in U_{K} \\
u=v & u, v \in U_{K} \\
u=a & u \in U_{K}, a \text { a proper name } \\
K_{1} \Rightarrow K_{2} & K_{1} \text { and } K_{2} \text { DRSs } \\
K_{1} \vee K_{2} & K_{1} \text { and } K_{2} \text { DRSs } \\
\neg K_{1} & K_{1} \text { is a DRS }
\end{array}
$$

7 DRT: Embedding, verifying embedding

Let U_{D} be a set of discourse referents, $K=\left\langle U_{K}, C_{K}\right\rangle$ a DRS with $U_{K} \subseteq U_{D}, M=$ $\left\langle U_{M}, V_{M}\right\rangle$ a model structure of first-order predicate logic that is suitable for K. An embedding of U_{D} into M is a (partial) function that assigns individuals from U_{M} to discourse referents.

An embedding f verifies the DRS K in $M\left(f \models_{M} K\right)$ iff
(a) $U_{K} \subseteq \operatorname{Dom}(f)$ and
(b) f verifies each condition $\alpha \in C_{K}$.
f verifies a condition α in $M\left(f \models_{M} \alpha\right)$ in the following cases:

$$
\begin{array}{ll}
f \models_{M} R\left(u_{1}, \ldots, u_{n}\right) & \text { iff }\left\langle f\left(u_{1}\right), \ldots, f\left(u_{n}\right)\right\rangle \in V_{M}(R) \\
f \models_{M} u=v & \text { iff } f(u)=f(v) \\
f \models_{M} u=a & \text { iff } f(u)=V_{M}(a) \\
f \models_{M} K_{1} \Rightarrow K_{2} & \text { iff for all } g \supseteq_{U_{K_{1}}} f \text { such that } g \models_{M} K_{1}, \\
& \text { there is } h \supseteq_{K_{2}} g \text { such that } h \models_{M} K_{2} \\
f \models_{M} \neg K_{1} & \text { iff there is no } g \supseteq_{K_{1}} f \text { such that } g \models_{M} K_{1} \\
f \models_{M} K_{1} \vee K_{2} & \\
& \text { iff there is a } g_{1} \supseteq U_{K_{1}} f \text { such that } g_{1} \models_{M} K_{1}, \\
& \text { or there is a } g_{2} \supseteq_{U_{K_{2}}} f \text { such that } g_{2} \models_{M} K_{2} .
\end{array}
$$

8 Presuppositions (van der Sandt)

A proto-DRS is a triple $\left\langle U_{K}, C_{K}, A_{K}\right\rangle$, where

- U_{K} is a set of discourse referents
- C_{K} is a set of conditions
- A_{K} is a set of "anaphoric" (alpha-) DRSs.

9 Resolution of α-DRSs

Let K and K^{\prime} be proto-DRSs such that K^{\prime} is a sub-DRS of K. Let $\gamma=\alpha x K_{s}$ be an alpha-free alpha-DRS in K^{\prime}, and let K_{t} be a sub-DRS of K that is accessible for γ.
(a) Accommodation: Remove γ from K^{\prime}, and extend K_{t} with $U_{K_{s}}$ and $C_{K_{s}}$.
(b) Binding: Let further $y \in U_{K_{t}}$ be a discourse referent that is suitable for γ. Then remove γ from K^{\prime}, and extend K_{t} with $U_{K_{s}}$ and $C_{K_{s}}$ and the condition $x=y$.

10 DPL: Interpretation

Terms:

$$
\begin{array}{ll}
\llbracket x \rrbracket^{M, h}=h(x) & \text { if } x \text { is a variable } \\
\llbracket a \rrbracket^{M, h}=V_{M}(a) & \text { if } a \text { is a constant. } .
\end{array}
$$

Formulas:

$$
\begin{array}{ll}
\llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{M} & =\left\{\langle g, h\rangle \mid h=g \text { and }\left\langle\llbracket t_{1} \rrbracket^{M, h}, \ldots, \llbracket t_{n} \rrbracket^{M, h}\right\rangle \in V_{M}(R)\right\} \\
\llbracket t_{1}=t_{2} \rrbracket^{M} & =\left\{\langle g, h\rangle \mid h=g \text { and } \llbracket t_{1} \rrbracket^{M, h}=\llbracket t_{2} \rrbracket^{M, h}\right\} \\
\llbracket \neg \varphi \rrbracket^{M} & =\left\{\langle g, h\rangle \mid h=g \text { and ex. no } k \text { s.t. }\langle g, k\rangle \in \llbracket \varphi \rrbracket^{M}\right\} \\
\llbracket \varphi \wedge \psi \rrbracket^{M} & =\left\{\langle g, h\rangle \mid \text { ex. } k \text { s.t. }\langle g, k\rangle \in \llbracket \varphi \rrbracket^{M} \text { and }\langle k, h\rangle \in \llbracket \psi \rrbracket^{M}\right\} \\
\llbracket \varphi \vee \psi \rrbracket^{M} & =\left\{\langle g, h\rangle \mid h=g \text { and ex. } k \text { s.t. }\langle g, k\rangle \in \llbracket \varphi \rrbracket^{M} \text { or }\langle g, k\rangle \in \llbracket \psi \rrbracket^{M}\right\} \\
\llbracket \varphi \rightarrow \psi \rrbracket^{M} & =\left\{\langle g, h\rangle \mid h=g \text { and for all } k: \text { if }\langle g, k\rangle \in \llbracket \varphi \rrbracket^{M}, \text { then ex. } j \text { s.t. }\langle k, j\rangle \in \llbracket \psi \rrbracket^{M}\right\} \\
\llbracket \exists x \cdot \varphi \rrbracket^{M} & =\left\{\langle g, h| \text { ex. } k\left[x \rrbracket g \text { s.t. }\langle k, h\rangle \in \llbracket \varphi \rrbracket^{M}\right\}\right. \\
\llbracket \forall x \cdot \varphi \rrbracket^{M} & =\left\{\langle g, h\rangle \mid h=g \text { and for each } k\left[x \rrbracket g, \text { there is an } m \text { s.t. }\langle k, m\rangle \in \llbracket \varphi \rrbracket^{M}\right\}\right.
\end{array}
$$

11 DPL: Truth, equivalence, entailment

(a) Truth and validity:

- A formula φ is true in M with respect to an input assignment g iff there is a h s.t. $\langle g, h\rangle \in \llbracket \varphi \rrbracket^{M}$.
- A formula φ is true in M iff φ is true in M with respect to every input assignment.
- φ is valid iff it is true in every model structure.
(b) Notions of equivalence:
- Satisfaction set: $\backslash \varphi \backslash_{M}=\left\{g \mid\right.$ exists h s.t. $\left.\langle g, h\rangle \in \llbracket \varphi \rrbracket^{M}\right\}$
- s-equivalence (static equivalence): $\varphi \Leftrightarrow_{S} \psi$ iff for all $M, \backslash \varphi \backslash_{M}=\backslash \psi \backslash_{M}$
- full equivalence (dynamic equivalence): $\varphi \Leftrightarrow \psi$ iff for all $M, \llbracket \varphi \rrbracket^{M}=\llbracket \psi \rrbracket^{M}$
(c) Notions of entailment:
- Static entailment: $\varphi \models_{S} \psi$ iff for all M, g : If φ is true wrt. M and g, then ψ is true wrt. M and g.
- Meaning inclusion: $\varphi \leq \psi$ iff $\llbracket \varphi \rrbracket^{M} \subseteq \llbracket \psi \rrbracket^{M}$.
- Dynamic entailment: $\varphi \models \psi$ iff for all M, g, h : if $\langle g, h\rangle \in \llbracket \varphi \rrbracket^{M}$, then there exists k s.t. $\langle h, k\rangle \in \llbracket \psi \rrbracket^{M}$.

