
”
Semantic Theory“ SS 06 Exercise 5 (23/05/2006)

http://www.coli.uni-saarland.de/courses/semantics-06/

1 Lambda terms and lambda structures

For each of the following lambda terms, give the corresponding lambda structure:

(a) ∀z.dolphin(z) → (mammal(z) ∧ live in sea(z))

(b) λx.(f(λx.x)(x))

For each of the following lambda structures, give a corresponding lambda term:

(c)

lam �

lam �

� �

@ �

@ �

var � var �

var �

(d)

@ �

@ �

lam �

lam �

@ �

var � var �

f �

a �

2 Solvability of dominance graphs

For each of the following dominance graphs, decide whether it is solvable or unsolva-
ble. If it is solvable, give a lambda structure that solves it. If it is unsolvable, explain
why you think it is unsolvable.

(a)

f1
�

� �

f2
�

� �

f3
�

� �

a1
� a2

� a3
�

(b)

f �

� �

g �

�

a � b �

(c)

@ �

@ �

believe � john �

�

@ �

@ �

every � student �

lam �

�

@ �

@ �

a � paper �

lam �

�

@ �

@ �

present � var �

var �

(d)

@ �

lam �

@ �

var � a �

�

var �



3 Semantics construction

Derive a dominance graph that describes the five readings of the following sentence:

Every researcher of a company sees a sample.

The lexicon entry for the words “of” and “sees” are dominance graphs consisting of
a single node with labels of∗ and see∗, respectively; of∗ and see∗ are both constants
of type 〈e, 〈e, t〉〉. The semantic construction rule for PP → P NP introduces an
application, in the same way as the rules for sentences and verb phrases from the
lecture. The rule for N’ → N PP looks as follows:

lam �

� �

@ �

� N var �

�

@ �

� PP var �

Assign a number to each node in the syntax tree, and mark the interface node that
belongs to each syntax node with its number.

4 Solving dominance graphs

Use the dominance graph solver described in the lecture to enumerate the five solved
forms of the graph from Question 3. It is sufficient to give the dominance graphs
that occur as arguments to recursive calls of the solver procedure; you don’t have
to spell out applications of Parent Normalisation and Redundancy Elimination. You
may abbreviate the tree fragments (i.e. the subgraphs that are connected via tree
edges) by triangles as in the lecture, but make sure that the tree fragments and their
holes can still be identified.

5 Type-raised noun phrases

In the lectures on underspecification, we deviated from our earlier analysis of tran-
sitive verbs as expressions of type 〈〈〈e, t〉, t〉, 〈e, t〉〉. Instead, we applied the verb
representations directly to variables or constants of type e because this made for
more readable analyses. This works well for transitive verbs with referential objects,
but as you know, it will get us into trouble for verbs with non-referential objects,
such as “seek”.



So modify the semantics construction rules from the lecture in such a way that they
work with transitive verbs analysed as expressions of type 〈〈〈e, t〉, t〉, 〈e, t〉〉. Your
rule system should derive underspecified descriptions of exactly the same expressions
that would have been derived by last week’s Cooper Storage analysis. Hint: It may
be helpful to maintain the invariant that the subtree below an NP interface node is
always an expression of type 〈〈e, t〉, t〉 (by contrast, the rules from the lecture assume
is that the trees below an NP interface node are always of type e).

6 * Solved forms and solutions

In the lecture, we stated that a dominance graph without binding edges has a solution
if and only if it has a solved form, but we didn’t prove this. Convince yourself that
it is in fact true as follows:

(a) Given a dominance graph in solved form, show how to construct a solution of
this graph.

(b) Given a solution of a dominance graph, show how to construct a solved form of
the graph.

Your algorithms should be correct for arbitrary graphs and solutions. Demonstrate
them on small but non-trivial examples.

To be turned in by 06/06/2006, 11:15 am


