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What should a semantic theory provide?

• A framework to specify word meaning

• The composition process leading from word meanings to 

sentence information

• The building of a semantic discourse representation from 

a sequence of sentences in a text (or piece of dialogue)

• Disambiguation/ resolution mechanisms selecting the 

intended information of an utterance from the large 

number of linguistically possible interpretations

• Inference mechanisms leading from the given utterance 

information to other relevant information
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Dolphins in Context
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About dolphins

Dolphins are mammals, not fish. They are warm blooded 

like man, and give birth to one baby called a calf at a 

time. At birth a bottlenose dolphin calf is about 90-130 

cms long and will grow to approx. 4 metres, living up to 

40 years.They are highly sociable animals, living in pods 

which are fairly fluid, with dolphins from other pods 

interacting with each other from time to time. 
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A simple context theory (Lewis 1970/72)

• Context-dependent expressions are interpreted with respect to 

contexts.

• Context-dependent expressions are either

– deictic (dependent on non-linguistic utterance situation), like I, 

you, now, here, etc., or

– anaphoric (dependent on linguistic context/ preevious 

discourse): he, she, it, then, the president, etc.

• A context is formally modelled as a sequence of semantically 

relevant context data with fixed arity.

• Meanings are modelled as functions from contexts to denotations –

more specifically, they are functions from certain projections of 

contexts (context coordinates, context features) to denotations,
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An Example

• Context c = 〈a, b, l, t, r〉

– a speaker

– b addressee

– l utterance location

– t utterance time

– r referred object

[[I]]M,g,c = utt(c) = a

[[you]]M,g,c = adr(c) = b

[[here]]M,g,c = loc(c) = l

[[now]]M,g,c = time(c) = t

[[this]]M,g,c = ref(c) = r
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A simple type-theoretic context semantics

• Model structure: M = 〈U, C, V〉

– U model universe

– C context set

– V value asignment function that assigns non-logical constants 

functions from contexts to denotations of appropriate type.

• Interpretation:

– [[α]]M,h,c = V(α)(c), if α non-logical constant,

– [[α]]M,h,c = h(α), if α Variable,

– [[α(β1, ... , βn)]]
M,h,c = [[α]]M,h,c([[β1]]

M,h,c, ... , [[βn]]
M,h,c)

– etc.
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Interpretation: An example

I am reading the book ⇒ read'(the-book')(I')

[[read'(the-book')(I')]]M,h,c =

[[read']]M,h,c([[the-book']]M,h,c)([[I']]M,h,c) =

V(read')(ref(c))(utt(c))

Note: context-invariant expressions are interpreted as 

constant functions:

V(read')(c) = V(read')(c') [= V(read')] for all c, c' ∈ C
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Problems [1]

• There is no plausible upper limit to the number of context 

coordinates:

Every student is familiar with the basic properties of 

FOL

John always is late.

Its hot and sunny everywhere.

Dolphin from different pods interact from time to time.

Bill owns an expensive car.

Another one, please!
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Problems [2]: Definite NP in standar type theory

• Standard type-theoretic representation of definite article:

the ⇒ λFλG∃y(∀x(F(x)↔x=y) ∧G(y))

the student ⇒ λG∃y(∀x(student'(x)↔x=y) ∧G(y))

the student is working ⇒

∃y(∀x(student'(x)↔x=y)∧work'(y))

• Truth conditions are problematic

• Truth conditions of negated sentence are even more 

problematic.
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Problems [2]: Definite NP in simple context 
semantics

• Utterances typically contain noun phrases referring to 

different objects:

The student is reading the book in the library

• In a given utterance situation, we can refer to different 

objects of the same kind by using different NP versions:

Please, give me the book / the blue book / the book 

about DRT
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Probleme [3]: Indefinite NP

• Standard type-theoretic analysis of indefinite NP

a ⇒ λPλQ∃x[P(x) ∧ Q(x)]

a student ⇒ λQ∃x[student'(x) ∧ Q(x)]

a student is working ⇒ ∃x[student'(x) ∧ work'(x)]

• Problem: 

A student is working. She is successful.

⇒ ∃x[student'(x) ∧ work'(x)] ∧ successful'(x)

No variable binding across sentence boundaries.
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Problems [4]: 

• Indefinite noun phrases introduce information into context, which is 

available at a later stage of discourse for anaphoric reference.

• Standard type-theoretic semantics does not provide any basis for 

modelling this context-changing potential of indefinite NPs.

• Simple context semantics does not either. 

• An additional problem:

Someone – whoever that may be – will find out. That person will 

be terribly upset.

If you have pencil or a ballpoint pen, could you please give it to 

me?

Objects of anaphoric reference do not necesserily refer to a specific 

individual. 
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Basic Assumptions in Discourse Semantics

• Meaning representation uses discourse referents in addition to 

formulas encoding truth conditions.

• "Division of labor" between definite and indefinite NPs:

– Indefinite NPs introduce new discourse referents

– Definite NPs refer to "old" or "familiar" discourse referents (which 

are already part of the meaning representation)

• Discourse referents first proposed by Lauri Karttunen (1973)

• Discourse Representation Theory: Hans Kamp (1981), see also 

Kamp/Reyle text book

• File Change Semantics: Irene Heim (1982)
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Discourse Representation Theory (DRT):
General Text Interpretation Scheme

Text

∑ = 〈 S1, S2 , . . . , Sn 〉

Syntactic analysis

DRS construction

K0 
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Discourse Representation Theory (DRT):
General Text Interpretation Scheme

Text

∑ = 〈 S1, S2 , . . . , Sn 〉

Syntactic analysis

P(S1) P(S2) . . .    P(Sn)

DRS construction

K0 K1 K2 . . . Kn
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Discourse Representation Theory (DRT):
General Text Interpretation Scheme

Text

∑ = 〈 S1, S2 , . . . , Sn 〉

Syntactic analysis

P(S1) P(S2) . . .    P(Sn)

DRS construction

K0 K1 K2 . . . Kn

Interpretation by embedding:

Truth conditions of ∑
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An example

• A professor owns a book. He reads it.

Det N V

ownsprofessora

NP VP

S

Det N

booka

NP
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An example

• A professor owns a book. He reads it.

V

owns

x VP

S

Det N

booka

NP

professor (x)

x
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An example

• A professor owns a book. He reads it.

V

owns

x VP

S

y

professor(x)
book(y)

x  y
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An example

• A professor owns a book. He reads it..

professor(x)

book(y)
own(x, y)

x  y
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An example

• A professor owns a book. He reads it.

professor(x)
book(y)
own(x, y)

x  y

NP

he

S

V NP

itreads

VP
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An example

• A professor owns a book. He reads it.

professor(x)

book(y)
own(x, y)

z = x

x  y  z

z

S

V NP

itreads

VP
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An example

• A professor owns a book. He reads it.

professor(x)
book(y)
own(x, y)

z = x
u = y

x  y  z  u

z

S

V u

reads

VP



16

Semantic Theory 2005  © M. Pinkal/A.Koller  UdS Computerlinguistik 31

An example

• A professor owns a book. He reads it.

professor(x)

book(y)
own(x, y)

z = x

u = y

read(z, u)

x  y  z  u
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DRS (Basic Version)

• A discourse representation structure (DRS) K is a pair 〈UK, CK〉, 

where

– UK is a set of discourse referents

– CK is a set of conditions

• (Fully reduced) conditions:

– R(u1, . . . , un) R n-place relation, ui ∈ UK

– u = v u, v ∈ UK

– u = a u ∈ UK, a is proper name

• Reducible conditions:

• Conditions of form α bzw. α(x1, … xn), where α is a context-free 

parse tree.
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DRS (Basic Version)

• A discourse referent (DR) u is free in DRS K = 〈UK, CK〉, 

if u is free in one of K's conditions, and u ∉ UK. 

• A DRS K is closed in K iff no DR occurs free in K.

• A reducible (fully reduced) DRS is a DRS which contains 

(does not contain) reducible conditions.
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DRS Construction Algorithm

• Input:

– a text Σ = 〈S1, …, Sn〉

– a DRS K0= 〈∅, ∅〉

• Repeat for i = 1, …, n:

– Add parse tree P(Si) to the conditions of Ki-1.

– Apply DRS construction rules to reducible conditions 

of Ki-1 , until no reduction steps are possible any more.

The resulting DRS is Ki , the discourse representation 

of text 〈S1, …, Si〉.
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DRS Construction Rule for Indefinite NP

• Triggering Configuration:

– α is reducible condition in DRS K; α contains [S [NP β] 

[VP γ]] or [VP [V γ] [NP β]] as a substructure.

– β is εδ, ε is indefinite article

• Action:

– Add a new DR x to UK.

– Replace β in α by x.

– Add δ(x) to CK.
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DRS Construction Rule for Personal Pronoun

• Triggering Configuration:

– α is reducible condition in DRS K; α contains [S [NP β] 

[VP γ]] or [VP [V γ] [NP β]] as substructure.

– β is a personal pronoun.

• Action:

– Add a new DR x to UK.

– Replace β in α by x.

– Select an appropriate DR y ∈ UK, and add x = y to CK.
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DRS Construction Rule for Proper Names

• Triggering Configuration:

– α is reducible condition in DRS K; α contains [S [NP β] 

[VP γ]] or [VP [V γ] [NP β]] as substructure.

– β is a proper name.

• Action:

– Add a new DR x to UK.

– Replace β in α by x.

– Add x = β to CK.

– (Variant: Add β(x) to CK)
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A more complex example

NPV

VPNP

SRProi

SRelN

N'Det

NPV

likes ti

she

that

book

a

recommends

VPNP

NDet

a professor

S
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Indefinite NP rule

NPV

VPNP

SRProi

SRelN

N'Det

NPV

likes ti

she

that

book

a

recommends

VPx

S

x

professor(x)
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Indefinite NP rule

NPV

VPNP

SRProi

SRelN

yV

likes ti

she

that

book

recommends

VPx

S

x  y

professor(x)
N'(y)
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Flattening

NPV

VPNP

SRProi

SRelN

likes ti

she

that

book

x  y

professor(x)

recommend(x, y)

N'(y)
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Relative Clause Rule

NPV

VPNP

likes y

she

x  y

professor(x)
recommend(x, y)
book(y)

S
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• Triggering configuration:

– α(x) is reducible condition in DRS K; α contains [N' [N' 

β] [SRel γ]] as a substructure

– γ is relative clause of the form δε, where δ is a relative 

pronoun and ε a sentence with an NP gap t, δ and t 

are co-indexed.

• Actions:

– Remove α(x) from CK.

– Add β(x) to CK .

– Replace the NP gap in ε by x, and add the resulting 

structure to CK.

DRS Construction Rule for Relative Clauses
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Relative Clause Rule

NPV

VPNP

likes y

she

x  y

professor(x)
recommend(x, y)
book(y)

S
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Personal Pronoun Rule

NPV

VPNP

likes y

z

x  y  z

professor(x)

recommend(x, y)
book(y)

z = x

S
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Fully reduced DRS after Flattening

x  y  z

professor(x)
recommends(x, y)
book(y)

z = x
likes(z, y)
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A constraint on the DRS construction algorithm

• A problem: The basic DRS construction algorithm can 

derive DRSes for both of the following sentences, with 

the indicated anaphoric binding

– [A professor]i recommends a book that shei likes

– *Shei recommends a book that [a professor]i likes

• If two triggering configurations of one or two different 

DRS construction rules occur in a reducible condition, 

then first apply the construction rule to the highest 

triggering configuration. ("Highest Triggering

Configuration Constraint")
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DRT: Denotational Interpretation

• Let

– UD a set of discourse referent,

– K = 〈UK, CK〉 a DRS with UK ⊆ UD, 

– M = 〈UM, VM〉 an FOL model structure appropriate for 

K.

• An embedding of K into M is a (partial) function f from UD 

to UM such that UK ⊆ Dom(f).
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Verifying embedding

• An embedding f of K in M verifies K in M: 

f I=M K iff f verifies every condition α ∈ CK.

• f verfies condition α in M (f |=M α):

(i) f |=M R(x1,…, xn) iff 〈f(x1), ... , f(xn)〉 ∈ VM(R)

(ii) f |=M x = a iff f(x) = VM(a)

(iii) f |=M x = y iff f(x) = f(y)
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Truth

• Let K be a closed DRS and M be an appropriate model 

structure for K.

K is true in M iff there is a verifying embedding f of K in 

M.

• Let D be a discourse/text, K a DRS that can be 

constructed from D.

D is true with respect to K in M iff K is true in M.

• Let D be a discourse/text, which is true with respect to all 

DRSes that can be consructed from D:

D is true in M iff D is true with respect to all DRSes that 

can be constructed from D. 
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• DRS K = 〈{x1, ..., xn}, {c1, ..., ck}〉

is truth-conditionally equivalent to the following FOL 

formula:

∃x1...∃xn[c1 ∧ ... ∧ ck]

x1 . . . xn

c1 . . . cn

Translation of DRSes to FOL
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Basic advantages of DRT

• DRT models intra-sentential anaphoric relations by DRS-

construction plus truth-conditional interpretation.

• In particular, DRT explains the ambivalent character of 

indefinite NPs: Expressions that introduce new reference 

objects into context, and are truth contidionally 

equivalent to existential quantifiers. 
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General Properties of DRT

• DRT is a dynamic theory of meaning:

Meaning of an expression is described as its context 

change potential.

• DRT is a representational theory of meaning:

Semantic information is more than truth conditions: 

Truth conditions + "anaphoric potential".

• DRT is non-compositional (see later).


