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Underspecification: The big picture�������� �������� 	�
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• Derive a single underspecified semantic representation 

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings 

excluded by the context.

• Enumerate readings by need.
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Solutions of dominance graphs
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Semantics construction
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Why binding edges?

• In an underspecification context, variable names aren't 

always sufficient to indicate the binder for each variable:

• Problem could be solved by requiring that variables are 

named apart, but this breaks down for extensions of 

dominance graphs.

• Binding edges are a clean and simple way of doing it.

∀x ∃x

P(x)
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A small correction

• On Tuesday, I said that lambda terms and lambda 

structures correspond up to α-equivalence.

• It is true that every lambda term can be encoded as a 

lambda structure.

• Also, every lambda structure that encodes a lambda 

term encodes a unique lambda term up to α-

equivalence.

• However, there are lambda structures that don't 

represent lambda terms, e.g.
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Solutions

• Question:

How many solutions does a solvable dominance graph 

have?
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Solutions

• Question:

How many solutions does a solvable dominance graph 

have?

• Answer:

An infinite number of solutions!
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Solved Forms

• Enumerating all solutions of a graph is therefore 

hopeless (and not useful).

• Thus, we aim at enumerating all solved forms of a 

dominance graph and not all solutions.

• A dominance graph in solved form is a graph whose tree 

and dominance edges form a forest.

• A graph G' is a solved form of G iff G' is in solved form, 

G and G' have the same tree and binding edges, and 

whenever there is a path from u to v in G (over tree and 

dominance edges), there is also a path from u to v in G'.
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Solved Forms and Solutions

. . .

. . .
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Solved forms and solutions

• We can consider solved forms as representatives of 

classes of solutions that only differ in "irrelevant details".

• Every graph in solved form without binding edges has a 

solution.

• Every solution of a graph is also a solution of one of its 

solved forms.

• We will completely ignore binding edges today. The 

solver can be easily extended to deal with binding edges 

as they are generated e.g. by Tuesday's grammar.
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Computational Questions

• Two computational questions arise in the context of 

dominance graphs.

– The solvability problem: Does a given dominance 

graph have any solutions?

– The enumeration problem: Enumerate the (minimal) 

solved forms of a dominance graph.

• The two questions are closely related.
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Solving dominance graphs

• A solver for dominance graphs is an algorithm that 

solves the solvability and enumeration problems.

• There is a variety of different solvers for dominance 

graphs.

• The algorithm presented here is not the fastest one, but 

it is easiest to explain.
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The solver: General architecture

• The solver is a search algorithm: 

– It recursively generates (simpler) new graphs by 

applying three simplification rules.

– If none of the rules are applicable, it tests whether the 

graph is solvable.
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The Choice Rule

• Driving force behind solver is the Choice rule: Which of 

two trees comes first?
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Cleaning Up I: Parent Normalisation

• Parent Normalisation changes a dominance edge (u,v) 

into a dominance edge (u,w), where w is the parent of v 

over a tree edge.
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Cleaning Up II: Redundancy Elimination

• Redundancy Elimination deletes an edge (u,v) whenever 

there is a path from u to v that doesn't use this edge.
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Correctness of the solver

• The rules are correct: 

– Every solved form of the original graph is a solved 

form of exactly one of the two results of Choice.

– The original graph and the result of PN or RE have 

exactly the same solved forms.

• Every application of Choice (plus some applications of 

PN and RE) arranges the parents of one node.

• Eventually there will be no more nodes with two 

incoming edges left; so the algorithm terminates.
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Detecting unsolvability

• It remains to check whether the end results are solvable 

or not.

• A dominance graph in which no node has two incoming 

edges is either a tree, or it has a cycle.

– If it's a tree, then the graph is in solved form.

– If it has a cycle, then it is unsolvable.
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The complete solver

solve(G):

1. Apply Parent Normalisation and Redundancy 

Elimination exhaustively to G.

2. If there is a node v in G with two incoming dominance 

edges:

apply Choice once; this gives new graphs H1 and H2

solve(H1)

solve(H2)

3. If there is no such node v, and if G has no cycle, then 

report G as a solved form of the original graph.
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An example run of the solver
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An example run of the solver
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Choice 1
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After Redundancy Elimination
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After Parent Normalisation (2 steps)
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This is a solved form!
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Choice 2
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After RE and PN
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Running into unsolvability
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The solver: Summary

• The solver is a search algorithm that computes a set of 

solved forms for a dominance graph.

• It doesn't enumerate all solved forms, but it does 

enumerate all minimal solved forms. Every solution of G 

solves exactly one minimal solved form of G.

• The algorithm may spend a lot of time trying to solve 

unsolvable graphs.

• This can be improved by a smarter unsolvability test.
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Comparison of different solvers
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Constructive solutions

• Our initial idea was that solutions of a dominance graph 

should correspond to semantic representations.

• But now we know that there is generally an infinite 

number of solutions!

• We are really only interested in constructive solutions, 

i.e. solutions for which every node in the solution is the 

α-image of a labelled node in the graph. 

• Can we always extract constructive solutions from 

solved forms?

Semantic Theory 2005  © M. Pinkal/A.Koller  UdS Computerlinguistik 34

Solved forms vs. constructive solutions
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Not all graphs have constructive solutions!
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a graph in solved form ... ... and a smallest solution.
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Constructive solvability

• In general, not all dominance graphs have constructive 

solutions.

• How can we tell which ones do?

• Can we somehow come up with a condition that 

guarantees constructive solvability, but which is also 

satisfied by all graphs that we need in 

underspecification?
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Hypernormal paths

• A hypernormal path is an undirected path in a 

dominance graph that doesn't use two dominance edges 

out of the same hole.

• A dominance graph is hypernormally connected (or a 

net) iff every pair of nodes is connected by a 

hypernormal path.

�� � � ���� ���
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Simple solved forms

• A solved form is called simple iff every hole has exactly 

one outgoing dominance edge.

• Every graph in simple solved form has 

exactly one constructive solution.

• All solved forms of a hypernormally 

connected graph are simple.

• By the way: A dominance graph is unsolvable iff it has a 

hypernormal (undirected) cycle.

This is not
obvious!
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Taking stock

• We know that every solved form of a hypernormally 

connected graph has exactly one constructive solution.

• This means that solved forms and the readings of the 

sentence correspond.

• Are the graphs that occur in practice actually 

hypernormally connected?
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The Net Hypothesis

• Hypothesis: All dominance graph that occur in 

underspecification are hypernormally connected.

• This can be proved for (an extension of) Tuesday's 

grammar.

• Empirical verification (Flickinger et al., HPSG 2005):

– Compute USRs for all 960 sentences in the Rondane 

Treebank using the English Resource Grammar.

– Result: 90% are hypernormally connected.

– The rest seem to be due to errors in grammar 

(but this is ongoing research).
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The relevance of the Net Hypothesis

• If the Net Hypothesis is true, it has the following 

consequences:

– solved forms correspond to readings

– don't need to invent "semantic material" when 

enumerating readings (in any underspecification 

formalism)

– an upper limit on the differences between syntactic 

and semantic structures

– USRs in different formalisms (MRS, Hole Semantics) 

can be translated into dominance graphs
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Summary

• Solving means enumeration of solved forms 

(not solutions).

• Solving dominance graphs:

– search algorithm that is driven by the Choice rule

– detect unsolvability via cyclicity test

• Hypernormally connected graphs (nets):

– guarantee that solved forms have constructive 

solutions

– it seems that every graph used in underspecification 

is a net


