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Underspecification: The big picture
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» Derive a single underspecified semantic representation
(USR) from the syntactic analysis.

» Perform inferences on USR to eliminate readings
excluded by the context.

* Enumerate readings by need.
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Solutions of dominance graphs
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Semantics construction
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Semantics construction
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Semantics construction
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Why binding edges?

 In an underspecification context, variable names aren't
always sufficient to indicate the binder for each variable:

V}g EJX
P(x)

* Problem could be solved by requiring that variables are
named apart, but this breaks down for extensions of
dominance graphs.

» Binding edges are a clean and simple way of doing it.
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A small correction

» On Tuesday, | said that lambda terms and lambda
structures correspond up to a-equivalence.

+ ltis true that every lambda term can be encoded as a
lambda structure.

» Also, every lambda structure that encodes a lambda
term encodes a unique lambda term up to o-
equivalence.

 However, there are lambda structures that don't

represent lambda terms, e.g. Kh\
f b
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Solutions

+ Question:
How many solutions does a solvable dominance graph
have?
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Solutions

+ Question:
How many solutions does a solvable dominance graph
have?

* Answer:
An infinite number of solutions!
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Solved Forms

« Enumerating all solutions of a graph is therefore
hopeless (and not useful).

» Thus, we aim at enumerating all solved forms of a
dominance graph and not all solutions.

» A dominance graph in solved form is a graph whose tree
and dominance edges form a forest.

« A graph G'is a solved form of G iff G' is in solved form,
G and G' have the same tree and binding edges, and
whenever there is a path from u to v in G (over tree and
dominance edges), there is also a path fromutovin G'.
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Solved Forms and Solutions
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Solved forms and solutions

» We can consider solved forms as representatives of
classes of solutions that only differ in "irrelevant details".

» Every graph in solved form without binding edges has a
solution.

» Every solution of a graph is also a solution of one of its
solved forms.

« We will completely ignore binding edges today. The
solver can be easily extended to deal with binding edges
as they are generated e.g. by Tuesday's grammar.
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Computational Questions

» Two computational questions arise in the context of
dominance graphs.

— The solvability problem: Does a given dominance
graph have any solutions?

— The enumeration problem: Enumerate the (minimal)
solved forms of a dominance graph.

» The two questions are closely related.
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Solving dominance graphs

» A solver for dominance graphs is an algorithm that
solves the solvability and enumeration problems.

» There is a variety of different solvers for dominance
graphs.

» The algorithm presented here is not the fastest one, but
it is easiest to explain.
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The solver: General architecture

» The solver is a search algorithm:

— It recursively generates (simpler) new graphs by
applying three simplification rules.

— If none of the rules are applicable, it tests whether the
graph is solvable.
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The Choice Rule

« Driving force behind solver is the Choice rule: Which of
two trees comes first?

C
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Cleaning Up |: Parent Normalisation

» Parent Normalisation changes a dominance edge (u,v)
into a dominance edge (u,w), where w is the parent of v
over a tree edge.
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Cleaning Up Il: Redundancy Elimination

» Redundancy Elimination deletes an edge (u,v) whenever
there is a path from u to v that doesn't use this edge.
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Correctness of the solver

* The rules are correct:

— Every solved form of the original graph is a solved
form of exactly one of the two results of Choice.

— The original graph and the result of PN or RE have
exactly the same solved forms.

» Every application of Choice (plus some applications of
PN and RE) arranges the parents of one node.

» Eventually there will be no more nodes with two
incoming edges left; so the algorithm terminates.
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Detecting unsolvability

+ It remains to check whether the end results are solvable
or not.

» A dominance graph in which no node has two incoming
edges is either a tree, or it has a cycle.
— If it's a tree, then the graph is in solved form.
— If it has a cycle, then it is unsolvable.
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The complete solver

solve(G):
1. Apply Parent Normalisation and Redundancy
Elimination exhaustively to G.
2. If there is a node v in G with two incoming dominance
edges:
apply Choice once; this gives new graphs H, and H,
solve(H,)
solve(H,)
3. If there is no such node v, and if G has no cycle, then
report G as a solved form of the original graph.
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An example run of the solver
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An example run of the solver
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Choice 1
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After Redundancy Elimination
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After Parent Normalisation (2 steps)
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After RE and PN
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Running into unsolvability
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The solver: Summary

» The solver is a search algorithm that computes a set of
solved forms for a dominance graph.

It doesn't enumerate all solved forms, but it does
enumerate all minimal solved forms. Every solution of G
solves exactly one minimal solved form of G.

» The algorithm may spend a lot of time trying to solve
unsolvable graphs.

» This can be improved by a smarter unsolvability test.
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Comparison of different solvers
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Constructive solutions

» Our initial idea was that solutions of a dominance graph
should correspond to semantic representations.

» But now we know that there is generally an infinite

number of solutions!

« We are really only interested in constructive solutions,
i.e. solutions for which every node in the solution is the
a-image of a labelled node in the graph.

« Can we always extract constructive solutions from

solved forms?
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Solved forms vs
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Not all graphs have constructive solutions!
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Constructive solvability

* In general, not all dominance graphs have constructive

solutions.

* How can we tell which ones do?

+ Can we somehow come up with a condition that
guarantees constructive solvability, but which is also
satisfied by all graphs that we need in
underspecification?
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Hypernormal paths

* A hypernormal path is an undirected path in a
dominance graph that doesn't use two dominance edges
out of the same hole.

p ) g f

» A dominance graph is hypernormally connected (or a
net) iff every pair of nodes is connected by a
hypernormal path.
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Simple solved forms

» A solved form is called simple iff every hole has exactly
one outgoing dominance edge.

» Every graph in simple solved form has
exactly one constructive solution.

» All solved forms of a hypernormally
connected graph are simple. ¥~ This is not

/ obvious!

» By the way: A dominance graph is unsolvable iff it has a
hypernormal (undirected) cycle.
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Taking stock

+ We know that every solved form of a hypernormally
connected graph has exactly one constructive solution.

» This means that solved forms and the readings of the
sentence correspond.

» Are the graphs that occur in practice actually
hypernormally connected?
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The Net Hypothesis

* Hypothesis: All dominance graph that occur in
underspecification are hypernormally connected.

» This can be proved for (an extension of) Tuesday's
grammar.

» Empirical verification (Flickinger et al., HPSG 2005):

— Compute USRs for all 960 sentences in the Rondane
Treebank using the English Resource Grammar.

— Result: 90% are hypernormally connected.

— The rest seem to be due to errors in grammar
(but this is ongoing research).
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The relevance of the Net Hypothesis

+ If the Net Hypothesis is true, it has the following
consequences:

— solved forms correspond to readings

— don't need to invent "semantic material" when
enumerating readings (in any underspecification
formalism)

— an upper limit on the differences between syntactic
and semantic structures

— USRs in different formalisms (MRS, Hole Semantics)
can be translated into dominance graphs
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Summary

» Solving means enumeration of solved forms
(not solutions).

» Solving dominance graphs:
— search algorithm that is driven by the Choice rule
— detect unsolvability via cyclicity test

» Hypernormally connected graphs (nets):

— guarantee that solved forms have constructive
solutions

— it seems that every graph used in underspecification
is a net
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