
1

Semantic Theory
Summer 2005

Underspecification II

M. Pinkal / A. Koller

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 2

Underspecification: The big picture�������� �������� 	�
	��� ��������� 	�
	��� �������� 	�
	��� ��������� 	�
	��� ������� ���
• Derive a single underspecified semantic representation

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings

excluded by the context.

• Enumerate readings by need.

2

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 3

Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@

∀

student'

→

var

@ ∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 4

Semantics construction

Det N TV

Every presentsstudent

NP

VP

S

Det

a

N

paper

NP

every

student'

@

@

var

a

paper'

@

@

var

present'

lam lam

3

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 5

Semantics construction

Det N TV

NP

VP

S

Det N

NP

every

@

@

lam

var

a

@

@

var

@

Every presentsstudent a paper

student' paper'

present'

lam

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 6

Semantics construction

Det N TV

NP

VP

S

Det N

NP

Every presentsstudent a paper

every

@

@

lam

a

@

@

var

@

student' paper'

present'

lam

var

@

4

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 7

Why binding edges?

• In an underspecification context, variable names aren't

always sufficient to indicate the binder for each variable:

• Problem could be solved by requiring that variables are

named apart, but this breaks down for extensions of

dominance graphs.

• Binding edges are a clean and simple way of doing it.

∀x ∃x

P(x)

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 8

A small correction

• On Tuesday, I said that lambda terms and lambda

structures correspond up to α-equivalence.

• It is true that every lambda term can be encoded as a

lambda structure.

• Also, every lambda structure that encodes a lambda

term encodes a unique lambda term up to α-

equivalence.

• However, there are lambda structures that don't

represent lambda terms, e.g.
f

a

h

b

5

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 9

Solutions

• Question:

How many solutions does a solvable dominance graph

have?

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 10

Solutions

• Question:

How many solutions does a solvable dominance graph

have?

• Answer:

An infinite number of solutions!

f

a

f

a

f

a

g

f

a

g

h

b

. . .

6

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 11

Solved Forms

• Enumerating all solutions of a graph is therefore

hopeless (and not useful).

• Thus, we aim at enumerating all solved forms of a

dominance graph and not all solutions.

• A dominance graph in solved form is a graph whose tree

and dominance edges form a forest.

• A graph G' is a solved form of G iff G' is in solved form,

G and G' have the same tree and binding edges, and

whenever there is a path from u to v in G (over tree and

dominance edges), there is also a path from u to v in G'.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 12

Solved Forms and Solutions

. . .

. . .

7

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 13

Solved forms and solutions

• We can consider solved forms as representatives of

classes of solutions that only differ in "irrelevant details".

• Every graph in solved form without binding edges has a

solution.

• Every solution of a graph is also a solution of one of its

solved forms.

• We will completely ignore binding edges today. The

solver can be easily extended to deal with binding edges

as they are generated e.g. by Tuesday's grammar.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 14

Computational Questions

• Two computational questions arise in the context of

dominance graphs.

– The solvability problem: Does a given dominance

graph have any solutions?

– The enumeration problem: Enumerate the (minimal)

solved forms of a dominance graph.

• The two questions are closely related.

8

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 15

Solving dominance graphs

• A solver for dominance graphs is an algorithm that

solves the solvability and enumeration problems.

• There is a variety of different solvers for dominance

graphs.

• The algorithm presented here is not the fastest one, but

it is easiest to explain.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 16

The solver: General architecture

• The solver is a search algorithm:

– It recursively generates (simpler) new graphs by

applying three simplification rules.

– If none of the rules are applicable, it tests whether the

graph is solvable.

9

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 17

The Choice Rule

• Driving force behind solver is the Choice rule: Which of

two trees comes first?

a

f

b

g

d

h

c

a

f

b

g

d

h

c

a

f

b

g

d

h

c

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 18

Cleaning Up I: Parent Normalisation

• Parent Normalisation changes a dominance edge (u,v)

into a dominance edge (u,w), where w is the parent of v

over a tree edge.

a

f

b

g

d

h

c

a

f

b

g

d

h

c

10

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 19

Cleaning Up II: Redundancy Elimination

• Redundancy Elimination deletes an edge (u,v) whenever

there is a path from u to v that doesn't use this edge.

a

f

b

g

d

h

c

a

f

b

g

d

h

c

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 20

Correctness of the solver

• The rules are correct:

– Every solved form of the original graph is a solved

form of exactly one of the two results of Choice.

– The original graph and the result of PN or RE have

exactly the same solved forms.

• Every application of Choice (plus some applications of

PN and RE) arranges the parents of one node.

• Eventually there will be no more nodes with two

incoming edges left; so the algorithm terminates.

11

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 21

Detecting unsolvability

• It remains to check whether the end results are solvable

or not.

• A dominance graph in which no node has two incoming

edges is either a tree, or it has a cycle.

– If it's a tree, then the graph is in solved form.

– If it has a cycle, then it is unsolvable.

a

f

b

g

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 22

The complete solver

solve(G):

1. Apply Parent Normalisation and Redundancy

Elimination exhaustively to G.

2. If there is a node v in G with two incoming dominance

edges:

apply Choice once; this gives new graphs H1 and H2

solve(H1)

solve(H2)

3. If there is no such node v, and if G has no cycle, then

report G as a solved form of the original graph.

12

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 23

An example run of the solver

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 24

An example run of the solver

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

13

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 25

Choice 1

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 26

After Redundancy Elimination

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

14

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 27

After Parent Normalisation (2 steps)

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

This is a solved form!

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 28

Choice 2

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

15

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 29

After RE and PN

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

This is a solved form!

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 30

Running into unsolvability

f

g

a b

f

g

a
b f

g

a
b

16

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 31

The solver: Summary

• The solver is a search algorithm that computes a set of

solved forms for a dominance graph.

• It doesn't enumerate all solved forms, but it does

enumerate all minimal solved forms. Every solution of G

solves exactly one minimal solved form of G.

• The algorithm may spend a lot of time trying to solve

unsolvable graphs.

• This can be improved by a smarter unsolvability test.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 32

Comparison of different solvers

17

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 33

Constructive solutions

• Our initial idea was that solutions of a dominance graph

should correspond to semantic representations.

• But now we know that there is generally an infinite

number of solutions!

• We are really only interested in constructive solutions,

i.e. solutions for which every node in the solution is the

α-image of a labelled node in the graph.

• Can we always extract constructive solutions from

solved forms?

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 34

Solved forms vs. constructive solutions

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

a graph in solved form and its unique constructive solution

18

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 35

Not all graphs have constructive solutions!

g

a b

g

a b

f

a graph in solved form and a smallest solution.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 36

Constructive solvability

• In general, not all dominance graphs have constructive

solutions.

• How can we tell which ones do?

• Can we somehow come up with a condition that

guarantees constructive solvability, but which is also

satisfied by all graphs that we need in

underspecification?

19

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 37

Hypernormal paths

• A hypernormal path is an undirected path in a

dominance graph that doesn't use two dominance edges

out of the same hole.

• A dominance graph is hypernormally connected (or a

net) iff every pair of nodes is connected by a

hypernormal path.

�� � � ���� ���

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 38

Simple solved forms

• A solved form is called simple iff every hole has exactly

one outgoing dominance edge.

• Every graph in simple solved form has

exactly one constructive solution.

• All solved forms of a hypernormally

connected graph are simple.

• By the way: A dominance graph is unsolvable iff it has a

hypernormal (undirected) cycle.

This is not
obvious!

20

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 39

Taking stock

• We know that every solved form of a hypernormally

connected graph has exactly one constructive solution.

• This means that solved forms and the readings of the

sentence correspond.

• Are the graphs that occur in practice actually

hypernormally connected?

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 40

The Net Hypothesis

• Hypothesis: All dominance graph that occur in

underspecification are hypernormally connected.

• This can be proved for (an extension of) Tuesday's

grammar.

• Empirical verification (Flickinger et al., HPSG 2005):

– Compute USRs for all 960 sentences in the Rondane

Treebank using the English Resource Grammar.

– Result: 90% are hypernormally connected.

– The rest seem to be due to errors in grammar

(but this is ongoing research).

21

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 41

The relevance of the Net Hypothesis

• If the Net Hypothesis is true, it has the following

consequences:

– solved forms correspond to readings

– don't need to invent "semantic material" when

enumerating readings (in any underspecification

formalism)

– an upper limit on the differences between syntactic

and semantic structures

– USRs in different formalisms (MRS, Hole Semantics)

can be translated into dominance graphs

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 42

Summary

• Solving means enumeration of solved forms

(not solutions).

• Solving dominance graphs:

– search algorithm that is driven by the Choice rule

– detect unsolvability via cyclicity test

• Hypernormally connected graphs (nets):

– guarantee that solved forms have constructive

solutions

– it seems that every graph used in underspecification

is a net

