Semantic Theory

Summer 2005
Modal and Tense logic

M. Pinkal / A. Koller

Two levels of interpretation

- Semantic analysis of a NL expression in a logical framework is a two-step process - construction of a semantic representation and its truth-conditional interpretation. Accordingly, the Compositionality Principle has two version:
- The semantic representation of a NL expression is uniquely determined by the semantic representation of its sub-expressions, and the way they are syntactically combined.
- The denotation of a semantic representation is uniquely determined by the denotation of its sub-expressions (and their syntactic combination).

Substitutability

- From the denotational version of the Principle of Compositionality, a substitution principle follows:
- If A is sub-expression in sentence C, and A and B have identical denotation, then A can be replaced by B in C without affecting C's truth value ("salva veritate" substitutability).
George W. Bush is married to Laura Bush.
George W. Bush is the American president.
Therefore: The American president is married to Laura Bush

Substitutability?

George W. Bush has always been married to Laura Bush.
George W. Bush is the American president.
Therefore: The American president has always been married to Laura Bush ???

By constitution, the American president is the Supreme Commander of the Armed Forces.
George W. Bush is the American president.
Therefore: By constitution, George W. Bush is the Supreme Commander of the Armed Forces. ???

Substitutability?

Let the following sentences be true:

- The weather is nice
- Bill is working
$-2+2=4$

It is not the case that ...
Necessarily ...
Yesterday, it was the case that ...

Extensions and Intensions

- Meanings of expressions are incompletely modelled by interpretation via (extensional) models.
- Moreover, we need the missing parts of the meaning to interpret important types of expressions and constructions:
- Tensed sentences (past, future, ...), temporal adverbs (sometimes, always, lately, tomorrow) and connectives (before, during) require to look into prior and future states of the world.
- Modal adverbs (necessarily, perhaps), modal verbs (can, may, must, ...), counterfactual conditionals require to look into alternative states of the world.
- For a more complete account of meaning information, we define denotations as intensions: functions from points in time / possible worlds to extensions (i.e., truth values, individuals, sets etc.)

Propositional Modal Logic

- Formulas of propositional modal logic: The smallest set such that:
- Propositional constants are in For
- If A, B are in For, so are $\neg A,(A \wedge B),(A \vee B)$, $(A \rightarrow B),(A \leftrightarrow B), € A, \diamond A$

Model Structure

- Model structure for propositional modal logic:
$\mathrm{M}=\langle\mathrm{W}, \mathrm{V}>$
- W is a non-empty set (set of possible worlds)
- V is value assignment function, which assigns each propositional constant a function $\mathrm{W} \rightarrow\{0,1\}$ For $\mathrm{V}(\mathrm{p})(\mathrm{w})$ we also write $\mathrm{V}_{\mathrm{w}}(\mathrm{p})-\mathrm{V}_{\mathrm{M}, \mathrm{w}}(\mathrm{p})$ respectively

Interpretation

- Interpretation of formulas (with respect to model structure M and possible world w):
$[[p]]^{M, w}=V_{M}(p)(w)$, if p propositional constant
$[[\neg \varphi]]^{\mathrm{M}, \mathrm{w}}=1$
$[[\varphi \wedge \psi]]^{M, w}=1 \quad$ iff $\quad[[\varphi]]^{M, w}=1$ and $[[\psi]]^{M, w}=1$
$[[\varphi \vee \psi]]^{M, w}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{w}}=1$ or $[[\psi]]^{\mathrm{M}, \mathrm{w}}=1$
$[[\varphi \rightarrow \psi]]^{M, w}=1 \quad$ iff $\quad[[\varphi]]^{M, w}=0$ or $[[\psi]]^{M, w}=1$
$[[\varphi \leftrightarrow \psi]]^{\mathrm{M}, \mathrm{w}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{w}}=[[\psi]]^{\mathrm{M}, \mathrm{w}}$
$[[\diamond \varphi]]^{\mathrm{M}, \mathrm{w}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, w^{\prime}}=1$ for at least one $\mathrm{w}^{\prime} \in \mathrm{W}$
$[[€ \varphi]]^{M, w}=1 \quad$ iff $\quad[[\varphi]]^{M, w^{\prime}}=1$ for all $w^{\prime} \in W$

Substitutability?

Let the following sentences be true:

- The weather is nice
- Bill is working
$-2+2=4$

It is not the case that ...
Necessarily ...
Yesterday, it was the case that ...

Validity, Entailment, Deduction

- According to the semantics of propositional modal logic, there are additional valid propositions and entailment relations, which again can be cast into deduction calculi.
- Examples: $\quad \mid=€ A \rightarrow A(€ A|=A, € A|-A)$
$\mid=A \rightarrow \diamond A$
$1=\diamond € A \rightarrow A$
$\mid=€(A \vee \neg A)$

Propositional Tense Logic

- Formulas of propositional tense logic: The smallest set such that:
- Propositional constants are in For
- If A, B are in For, so are $\neg A,(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B), F A$, GA, PA, HA

FA - "it will at some stage be the case that A "
GA - "it is always going to be the case that A"
PA - "it was at some stage the case that A "
HA - "it always has been the case that A"

Model Structure

- Model structure for propositional tense logic:
$\mathrm{M}=<\mathrm{T},<, \mathrm{V}>$
- T is non-empty set (set of points in time)
- < is a strict ordering relation on T
-V is value assignment function, which assigns each propositional constant a function $\mathrm{T} \rightarrow\{0,1\}$ For $\mathrm{V}(\mathrm{p})(\mathrm{t})$ we also write $\mathrm{V}_{\mathrm{t}}(\mathrm{p})-\mathrm{V}_{\mathrm{M}, \mathrm{t}}(\mathrm{p})$ respectively

Interpretation

- Interpretation of formulas (with respect to model structure M and time t):
$[[p]]^{M, t}=V_{M}(p)(w)$, if p propositional constant
$[[\neg \varphi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=0$
$[[\varphi \wedge \psi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=1$ and $[[\psi]]^{\mathrm{M}, \mathrm{t}}=1$
$[[\varphi \vee \psi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=1$ or $[[\psi]]^{\mathrm{M}, \mathrm{t}}=1$
$[[\varphi \rightarrow \psi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=0$ or $[[\psi]]^{\mathrm{M}, \mathrm{t}}=1$
$[[\varphi \leftrightarrow \psi]]^{\mathrm{M}, \mathrm{t}}=1 \quad$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}}=[[\psi]]^{\mathrm{M}, \mathrm{t}}$
$[[F \varphi]]]^{M, t}=1$ iff $\left.\quad[[\varphi]]\right]^{M, t^{\prime}}=1$ for at least one $t^{\prime}>t$
$[[G \varphi]]]^{M, t}=1$ iff $[[\varphi]]^{M, t^{\prime}}=1$ for all $t^{\prime}>t$
$[[\mathbf{P} \varphi]]^{\mathrm{M}, \mathrm{t}}=1$ iff $\quad[[\varphi]]^{\mathrm{M}, \mathrm{t}^{\prime}}=1$ for at least one $\mathrm{t}^{\prime}<\mathrm{t}$
$[[H \varphi]]$ M,t $=1$ iff $[[\varphi]]$ M,t' $=1$ for all $\mathrm{t}^{\prime}<\mathrm{t}$

Propositional Logic with Tense and Modality

- Syntax: Tense + modal operators
- Model structure: $\mathrm{M}=<\mathrm{W}, \mathrm{T},<, \mathrm{V}>$ with
$V(p): W \times T \rightarrow\{0,1\}$
alternative notation: $\mathrm{V}_{\mathrm{M}, \mathrm{w}, \mathrm{t}}(\mathrm{p})$
- Interpretation with respect to M, w and t .

Semantics for FOL with tense and modalities

- Model structure: $\mathrm{M}=<\mathrm{U}, \mathrm{W}, \mathrm{T},<, \mathrm{V}>$
$-\mathrm{V}\left(\mathrm{V}_{\mathrm{M}}\right)$ is value assignment function for non-logical constants, which assigns
- individuals $\left(\in \mathrm{U}_{\mathrm{M}}\right)$ to individual constants
- functions $\mathrm{W} \times \mathrm{T} \rightarrow \mathrm{U}^{\mathrm{n}}$ to n -place relational constants
- Assignment function for variables $\mathrm{g}: \mathrm{IV} \rightarrow \mathrm{U}_{\mathrm{M}}$

Interpretation of Terms

- Interpretation of terms (with respect to model structure M and variable assignment g):
$[[\alpha]]{ }^{M, g, w, t}=V_{M}(\alpha)$, if α individual constant
$[[\alpha]]{ }^{M, g, w, t}=g(\alpha)$, if α variable

Interpretation

- Interpretation of formulas (with respect to model structure M, variable assignment g , world w and time t):

$\left[\left[R\left(t_{1}, \ldots, t_{n}\right)\right]\right]^{M, g, w}$		$\left.\left.\left\langle\left[\left[t_{1}\right]\right]^{M, g, w, t}, \ldots,{ }^{\text {c }}\left[t_{n}\right]\right]\right]^{M, g, w, t}\right\rangle \in V_{M}(R)(w, t)$
$[[s=t]]^{M, g, w, t}=1$	iff	$\left.[[s]]^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}}=[\mathrm{lt}]\right]^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}}$
$[[\neg \varphi]]^{M, g, w, t}=1$		iff $[[\varphi]]^{M, g, w, t}=0$
$\begin{aligned} & {[[\varphi \wedge \psi]]^{\mathrm{M}, \mathrm{~g}, \mathrm{w}, \mathrm{t}}=1} \\ & \text { etc. } \end{aligned}$	iff	$[[\varphi]]^{M, g, w, t}=1$ and $[[\psi]]^{M, g, w, t}=1$
$[[\exists x \varphi]]^{M, g, w, t}=1$	iff	there is $a \in \mathrm{U}_{\mathrm{M}}$ such that $[[\varphi]]^{\mathrm{M}, g[/ \times a], \mathrm{w}, \mathrm{t}}=1$
$[[\forall X \varphi]]^{M, g, w, t}=1$	iff	for all $a \in \mathrm{U}_{\mathrm{M}}:[[\varphi]]^{\mathrm{M}, \mathrm{g}[/ \mathrm{d}], \mathrm{w}, \mathrm{t}}=1$
$[[F \varphi]]^{\mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}}=1$	iff	$[[\varphi]] \mathrm{M}, \mathrm{g}, \mathrm{w}, \mathrm{t}^{\prime}=1$ for at least one $\mathrm{t}^{\prime}>\mathrm{t}$
etc. $[[€ A]] \mathrm{M}, \mathrm{~g}, \mathrm{w}, \mathrm{t}=1$	iff	$[[\varphi]]^{M, g, w, t}=1$ for all $w^{\prime} \in \mathrm{W}$, etc.

De dicto/de re readings

De dicto/de re readings:

- The American president has always been married to Laura Bush

Only de re reading is true.

- By constitution, the American president is the Supreme Commander of the Armed Forces. Only de dicto reading is true.

