
1

Semantic Theory
Summer 2005

Scope Ambiguities

M. Pinkal / A. Koller

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 2

Where are we right now?

• Goal: Compositional construction of semantic

representations out of syntactic analyses:

– The meaning of a complex expression is uniquely

determined by the meanings of its sub-expressions

and its syntactic structure.

• Type theory.

• Assign each syntactic constituent a lambda term;

construction rules look at local trees.

• Rules for quantifiers, NPs, intransitive verbs, relative

clauses, ...

• Transitive verbs get surprising type.

2

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 3

Some basic rules

• Rule of functional application:

• Rule of non-branching nodes:

A

B C

B ⇒ β: <σ, τ>

C ⇒ γ:σ

A ⇒ β(γ): τ

B ⇒ β: σ

C ⇒ γ: <σ, τ>

A ⇒ γ(β): τ

or

A

B

B ⇒ β: τ

A ⇒ β: τ

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 4

Some basic rules

• Rule of lexical nodes:

The semantic representation β for the word "a" is

supplied by the lexicon.

A

a A ⇒ β: τ

3

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 5

An example

S

NP VP

DET N V

Every student works

λFλG∀x(F(x)→ G(x)) student' work'

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 6

An example

S

NP VP

DET N V

Every student works

(λFλG∀x(F(x)→ G(x)))(student')

⇔β λG∀x(student'(x)→ G(x))

work'

4

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 7

An example

S

NP VP

DET N V

Every student works

λG∀x(student'(x)→ G(x)) work'

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 8

An example

S

NP VP

DET N V

Every student works

(λG∀x(student'(x)→ G(x)))(work')

⇔β ∀x(student'(x)→ work(x))

5

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 9

Transitive verbs

• Type-raised analysis of transitive verbs:

present': <<<e,t>,t>,<e,t>>

• This is necessary because the semantic representation

of the transitive verb must be combined with two NPs of

type <<e,t>,t>.

• First apply the verb representation to the object

representation; then apply the subject representation to

the result.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 10

Transitive verbs

NPV

NP VP

S

every student

presents a paper

λF∀x(student'(x)→ F(x)) λG ∃y(paper'(y) ∧ G(y))

λQ Q λx[QQ(λy[present*(y)(x)])]

6

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 11

Transitive verbs

NPV

NP VP

S

every student

presents a paper

λF∀x(student'(x)→ F(x))
λQ Q λx[QQ(λy[present*(y)(x)])](λG ∃y(paper'(y) ∧ G(y)))

⇔β λx ∃y(paper'(y) ∧ present*(y)(x))

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 12

Transitive verbs

NPV

NP VP

S

every student

presents a paper

λF∀x(student'(x)→ F(x))(λx ∃y(paper'(y) ∧ present*(y)(x)))

⇔β ∀x(student'(x) → ∃y(paper'(y) ∧ present*(y)(x)))

7

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 13

Scope ambiguities

• Some sentences have more than one possible semantic

representation:

Every student presents a paper.

(a) ∀x[student'(x) → ∃y[paper'(y) ∧ present'(x,y)]]

(b) ∃y[paper'(y) ∧ ∀x[student'(x) → present(x,y)]]

Every student didn't pay attention.

(a) ∀x[student'(x) → ¬pay-attention'(x)]

(b) ¬∀x[student'(x) → pay-attention'(x)]

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 14

Scope ambiguities

• The number of readings of a sentence with scope ambiguities grows

with the number of NPs:

Every researcher of a company saw some sample.

1. ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))

2. ∃z(spl'(z) ∧ ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → see'(x,z))

3. ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))

4. ∃y(cp'(y) ∧ ∃z(spl'(z) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

5. ∃z(spl'(z) ∧ ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

Every researcher of a company saw some samples of most products.

etc.

8

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 15

The problem with scope

• Sentences with scope ambiguities can have multiple

semantic representations for a syntactic constituent.

• The order of the scope-bearing elements (quantifiers,

negation, adverbs, ...) don't necessarily follow the order

of the syntactic combination.

• But: With the approach we have so far, we can only

derive a single semantic representation for each

constituent!

• How can we solve this problem?

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 16

Semantic ambiguity: A picture

Sentence Semantic representation
Syntactic

analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation

Semantic representation

Semantic representation

?
?

?

?

9

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 17

Solving the scope problem: Intuition

NPV

NP VP

S

every student

presents a paper

present*(x2)(x1)

∃y(paper'(y) ∧ present*(y)(x1))

∀x(student'(x) → ∃y(paper'(y) ∧ present*(y)(x)))

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 18

The missing reading

• We get one reading of the sentence by deriving the

following terms:

• We could construct the second reading as follows:

∀x(student'(x) → ∃y(paper'(y) ∧ present*(y)(x)))

∃y(paper'(y) ∧ present*(y)(x1))
present*(x2)(x1)

∃y(paper'(y) ∧ ∀x(student'(x) → present*(y)(x)))
∀x(student'(x) → present*(x2)(x))

present*(x2)(x1)

10

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 19

Solving the scope problem: Principles

• Structural ambiguity: We can obtain the two readings by

embedding an intermediate term into the NP

representations in different orders.

• Invariant variable binding: At the same time, we must

make sure that the variables will be bound in the same

way in both readings.

• To a certain degree, we can solve both problems using

lambda abstraction in a clever way.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 20

Using lambda abstraction

• Intermediate results are all of type t. Abstract over the

correct variable and then apply the NP representation to

the abstracted term.

λG∃y(paper'(y) ∧ G(y))(λx2. λF∀x(student'(x)→ F(x))(λx1.present*(x2)(x1)))
λF∀x(student'(x)→ F(x))(λx1.present*(x2)(x1))

present*(x2)(x1)

λF∀x(student'(x)→ F(x))(λx1. λG∃y(paper'(y) ∧ G(y))(λx2.present*(x2)(x1)))
λG∃y(paper'(y) ∧ G(y))(λx2.present*(x2)(x1))

present*(x2)(x1)

• Problem: How can we do this compositionally?

11

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 21

Nested Cooper Storage

• One algorithm for deriving such representations

compositionally is Nested Cooper Storage (Keller 1988).

It repairs some problems of the original Cooper Storage

(Cooper 1975).

• Cooper Storages compute the set of all semantic

readings nondeterministically from a single syntactic

analysis:

Sentence
Syntactic

analysis
Semantic representation

Semantic representation

Semantic representation

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 22

Nested Cooper Storage: Principles

• The semantic values of syntactic constituents are

ordered pairs 〈α, ∆〉:

– α ∈ WEτ is the content

– ∆ is the quantifier store: a set of NP representations

that must still be applied.

• Rather than applying the representation of an NP

immediately, we can store it in ∆.

• At sentence nodes, we can retrieve NP representations

from the store in arbitrary order and apply them to the

appropriate argument positions.

12

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 23

Nested Cooper Storage: Principles

• A lambda term M counts as a semantic representation

for the syntactic analysis iff we can derive 〈M, ∅〉 as a

value for the entire syntax tree.

• Because some rules are nondeterministic, there may be

more than one M for which we can derive 〈M, ∅〉.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 24

Nested Cooper Storage: Old Rules

• Rule of functional application:

• Rule of non-branching nodes:

• Rule of lexical nodes:

A

B C

B ⇒ 〈β, ∆〉

C ⇒ 〈γ, Γ〉

A ⇒ 〈β(γ), ∆ ∪ Γ〉

B ⇒ 〈β, ∆〉

C ⇒ 〈γ, Γ〉

A ⇒ 〈γ(β), ∆ ∪ Γ〉

or

A

B

B ⇒ 〈β, ∆〉

A ⇒ 〈β, ∆〉

A

a A ⇒ 〈β, ∅〉

13

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 25

Nested Cooper Storage: Storage

A

B C

A

C B
or

B ⇒ 〈γ, Γ〉 B is an NP node

C ⇒ 〈β, ∆〉 β ∈ WE〈e, τ〉
————————————————————

A ⇒ 〈β(xi), ∆ ∪ {〈γ, Γ〉i}〉, i ∈ N is a new index

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 26

Nested Cooper Storage: Retrieval

A ⇒ 〈α, ∆ ∪ {〈γ, Γ〉i}〉 A is any sentence node

——————————————————————

A ⇒ 〈γ(λxiα), ∆ ∪ Γ〉

14

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 27

Nested Cooper Storage: Example

Every student presents a paper.

NP
〈λQ∃y[paper'(y) ∧ Q(y)], ∅〉

V
〈λuλv[pres'(u)(v)], ∅〉

NP
〈λP∀x[student'(x) → P(x)], ∅〉

VP
〈λv[pres'(x2)(v)], {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

S
〈pres'(x2)(x1),

{〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

Every student

presents a paper

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 28

Retrieval: Reading 1

• By applying the Retrieval rule, we can derive the

following representation for the S node:

〈pres'(x2)(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

⇒R 〈λQ∃y[paper'(y) ∧ Q(y)](λx2.pres'(x2)(x1)),

{〈λP∀x[student'(x) → P(x)], ∅〉1 }〉

⇒β 〈∃y[paper'(y) ∧ pres'(y)(x1)], {〈λP∀x[student'(x) → P(x)], ∅〉1 }〉

⇒R 〈λP∀x[student'(x) → P(x)](λx1.∃y[paper'(y) ∧ pres'(y)(x1)]), ∅〉

⇒β 〈∀x[student'(x) → ∃y[paper'(y) ∧ pres'(y)(x)]], ∅〉

15

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 29

Retrieval: Reading 2

• By applying the Retrieval rule, we can derive the

following representation for the S node:

〈pres'(x2)(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

⇒R 〈λP∀x[student'(x) → P(x)] (λx1.pres'(x2)(x1)),

{〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

⇒β 〈∀x[student'(x) → pres'(x2)(x)], {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

⇒R 〈λQ∃y[paper'(y) ∧ Q(y)](λx2.∀x[student'(x) → pres'(x2)(x)]), ∅〉

⇒β 〈∃y[paper'(y) ∧ ∀x[student'(x) → pres'(y)(x)]], ∅〉

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 30

Compositionality

• The Compositionality Principle as stated earlier:

The meaning of a complex expression is uniquely

determined by the meanings of its sub-expressions

and its syntactic structure.

• Nested Cooper Storage shows: We can maintain this

principle even in the face of semantic (scope) ambiguity.

16

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 31

Compositionality and NCS

• Two versions of the Compositionality Principle:

– on the level of denotations

– on the level of semantic representations

• Nested Cooper Storage is clearly compositional on the

level of semantic representations -- but in a less

straightforward way than last week's construction

algorithm.

• Compositional on the level of denotations: only in a very

indirect sense.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 32

Other types of scope ambiguities

• Nested Cooper Storage makes the simplifying

assumption that only NPs can participate in scope

ambiguities.

• This is not true in general:

– Every student didn't pay attention.

– Sometimes every student is sleepy.

• NCS could probably be extended to deal with these, but

we'll do something better next week anyway.

17

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 33

Scope islands

• Nested Cooper Storage makes the simplifying

assumption that NPs can be retrieved at all sentence

nodes.

• This is not true in general because sentence-embedding

verbs create scope islands:

– John said that he saw a girl. (2 readings)

– John said that he saw every girl. (1 reading)

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 34

De dicto/de re ambiguities

• De dicto/de re ambiguities are a special kind of scope

ambiguity in which one scope bearer is a verb:

Gerhard Schröder wants to visit a car factory.

∃x.factory(x) ∧ want(gs, ^visit(gs,x)) (de re)

want(gs, ^∃x.factory(x) ∧ visit(gs,x)) (de dicto)

• Are we talking about a specific or just any arbitrary

factory? Does the sentence claim that a factory exists?

• We need a more expressive (intensional) logic to

represent the different readings, but the ambiguity is just

a scope ambiguity and can be resolved by NCS.

18

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 35

Scope ambiguities in the real world

• Scope ambiguities are not a very intuitive type of

ambiguity, and are sometimes not seen as a serious

problem for computational linguistics.

• In practice, they are often resolved by context, world

knowledge, preferences, etc.

• We consider them here because they pose a

fundamental challenge for semantics construction.

• If we want "deep" semantic representations that say

something about scope, we must take scope ambiguities

into account.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 36

Scope ambiguities in the real world

• Also, some large-scale grammars (e.g. the English

Resource Grammar) compute semantic representations

with scope.

• The ERG analyses all NPs as scope bearers to keep the

grammar simple. (This is not necessarily correct: proper

names, definites, etc.)

• Median number of scope readings in the Rondane

corpus: 55.

19

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 37

Conclusion

• Last week's type-driven semantics construction is a nice

first step.

• But it is fundamentally unable to deal with semantically

ambiguous sentences.

• Scope ambiguity: Application order of NP

representations can be different from syntactic structure.

• Nested Cooper Storage: Equip semantic representations

with a quantifier store to allow flexible application of

quantifiers.

