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Frege's Principle

... or the Principle of Compositionality:

• The meaning of a complex expression is uniquely
determined by the meanings of its sub-expressions and
its syntactic structure.
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Two levels of interpretation

• Semantic analysis of a NL expression in a logical framework is a
two-step process – construction of a semantic representation and
its truth-conditional interpretation. Accordingly, the Compositionality
Principle has two version:

• The semantic representation of a NL expression is uniquely
determined by the semantic representation of its sub-expressions,
and the way they are syntactically combined.

• The denotation of a semantic representation is uniquely determined
by the denotation of its sub-expressions (and their syntactic
combination).
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Semantic construction: Three basic rules

• Rule of functional application:

If A is a binary branching node with daughters B and C
(in arbitrary order),  B ⇒ β: <σ, τ>, C ⇒ γ:σ, then

A  ⇒ β(γ):τ

• Rule of non-branching nodes:
If A is a non-branching node with daughter B and B ⇒ β
, then A ⇒ β as well.

• Rule of lexical nodes:

If A is a pre-terminal node with lexical daughter a, then
A ⇒ a', where a' is the semantic representation of a
provided by the lexicon.
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An example

         S0

   NP1                VP2

     DET3      N4    V5

Every student works

  DET3 ⇒ λFλG∀x(F(x)→ G(x)) : <<e,t>,<<e,t>,t>>      N4 ⇒ student' : <e,t>

  NP1 ⇒ λFλG∀x(F(x)→ G(x))(student): <<e,t>,t> ⇔β λG∀x(student(x)→ G(x))

  V5  ⇒ work': <e,t>

  VP2  ⇒ work': <e,t>

        S0  ⇒ λG∀x(student(x)→ G(x))(work): t ⇔β ∀x(student(x)→ work(x))
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• big elephant, talented logician, alleged murderer demonstrate that
A+N constructions cannot be analysed as conjunction of two
standard one-place predicates. In the general case, the constants
big', talentd', alleged' representing the adjective meaning have type
<<e,t>,<e,t>>.

• There is a frequent special case of so-called "interesective" or
"referential" adjectives, however. A white elephant is an animal that
is white and an elephant, a married logician a person who is
married and is a logician. The denotation of an A+N construction
can be obtained by  froming the intersection between the N
denotation with an underlying set of "white objects" or "married
persons" referred to by the adjective.
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Reconsidering attributive adjectives [2]

• We can represent the special semantics of intersective
adjectives as λ-expressions of the higher type

(<<e,t>,<e,t>>), which use a lower type predicate
(married*, white*) representing their specific lexical
meaning representation:

– λFλx [married*(x) ∧ F(x)]: <<e,t>,<e,t>>

• For married student, we get:

– λFλx [married*(x) ∧ F(x)](student') :<e,t>

⇔β λx [married*(x) ∧ student'(x)]
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A general strategy for semantic modelling

• Select the type for expressions of a lexical category as high as
needed

– to cover all lexical items of that category

– to fit into the compositional process of semantic construction

• Encode the often much simpler meaning of specific (sub-types) of
lexical items as lambda expressions with an appropriate underlying
predicate.

• This way, the requirements of a uniform and straightforward
semantic construction and a simple and direct resulting
representation of sentence meanings can be fullfilled at the same
time (in many cases).
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Relative Clauses

NP

N'

DET
SN'

R
C

RPRON NP

DET N

VP

V NPi

a         book   thati  every student owns ε
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Semantics of relative clauses

• Syntactic structure provides non-local information about
the relation holding between the relative pronoun and
the empty (object) NP (here expressed via co-indexing)

• A pair of semantic composition rules transfers this
information into the semantic interpretation: The empty
NP translates to a variable, and later this variable is
bound by abstraction, where the variable abstrcted over
is read off the index of the relative pronoun.
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Two more construction rules

• Empty NP rule:

If A is an empty NP node indexed with i, then A ⇒ xi

• Relative clause rule:

If A is a relative clause with with daughters B and C, B a
relative pronoun  indexed with i, C ⇒ γ:t, then

A  ⇒ λF λ xi [Fx ∧γ]: <<e,t>,<e,t>>
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Quantificational NPs and transitive verbs

∀d (student(d)→ ∃p (paper(p) ∧present(d,p)))

Every student presented a paper
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Quantificational NPs and transitive verbs

A composition problem: There is a type mismatch between
subject NP, object NP and relational verb representation.

• every student ⇒ λF∀x(student'(x)→ F(x)): <<e,t>,t>

• a paper ⇒  λG ∃y(paper'(y) ∧ G(y)): <<e,t>,t>

• presented ⇒ present': <e,<e,t>>

... and an attempt for a solution: Raise the type of the first-
order relation:

present': <<<e,t>,t>,<e,t>>
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Non-referential arguments

• John finds a unicorn |= ∃x unicorn'(x)

• John seeks a unicorn |≠ ∃x unicorn'(x)

• Subject position of verbs is always referential.

• Direct object position of some verbs is referential, of
some other verbs isn't.

• Semantic representation pattern for referential verbs:
 λQ Q λx[QQ(λy[find*(y)(x)])]: <<<e,t>,t>,<e,t>>,

 where find*: <<e,t>,t>
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Example

• presented ⇒ λQ Q λx[QQ(λy[present*(y)(x)])]: <<<e,t>,t>,<e,t>>

• a paper ⇒ λG ∃z(paper'(z) ∧ G(z)): <<e,t>,t>

• presented a paper ⇒ λQ Q λx[QQ(λy[present*(y)(x)])]

                    (λG ∃z(paper'(z) ∧ G(z)))

 ⇔β λx[λG ∃z(paper'(z) ∧ G(z))(λy[present*(y)(x)])]

 ⇔β λx[∃z(paper'(z) ∧ λy[present*(y)(x)](z))]

 ⇔β λx[∃z(paper'(z) ∧ present*(z)(x))]

• every student ⇒ λG∀x(student'(x)→ G(x)) <<e,t>,t>

 ⇔β ∀x(student'(x) →∃z(paper'(z) ∧ present*(z)(x)))


