Semantic Theory

Summer 2005 Basic Semantic Construction

M. Pinkal / A. Koller

Frege's Principle

... or the Principle of Compositionality:

- The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and its syntactic structure.

Two levels of interpretation

- Semantic analysis of a NL expression in a logical framework is a two-step process - construction of a semantic representation and its truth-conditional interpretation. Accordingly, the Compositionality Principle has two version:
- The semantic representation of a NL expression is uniquely determined by the semantic representation of its sub-expressions, and the way they are syntactically combined.
- The denotation of a semantic representation is uniquely determined by the denotation of its sub-expressions (and their syntactic combination).

Semantic construction: Three basic rules

- Rule of functional application:

If A is a binary branching node with daughters B and C (in arbitrary order), $B \Rightarrow \beta:<\sigma, \tau>, C \Rightarrow \gamma: \sigma$, then
$A \Rightarrow \beta(\gamma): \tau$

- Rule of non-branching nodes:

If A is a non-branching node with daughter B and $B \Rightarrow \beta$, then $A \Rightarrow \beta$ as well.

- Rule of lexical nodes:

If A is a pre-terminal node with lexical daughter a, then
$A \Rightarrow a^{\prime}$, where a^{\prime} is the semantic representation of a provided by the lexicon.

An example

$$
\begin{aligned}
& \mathrm{DET}_{3} \Rightarrow \lambda F \lambda G \forall x(F(x) \rightarrow G(x)): \ll e, t>, \ll e, t>, t \gg \quad \mathrm{~N}_{4} \Rightarrow \text { student' : <e,t> } \\
& \mathrm{NP}_{1} \Rightarrow \lambda F \lambda G \forall x(F(x) \rightarrow G(x))(\text { student }): \ll e, t>, t>\Leftrightarrow_{\beta} \lambda G \forall x(\text { student }(x) \rightarrow G(x)) \\
& \mathrm{V}_{5} \Rightarrow \text { work': <e,t> } \\
& \text { VP }_{2} \Rightarrow \text { work': <e,t> } \\
& \mathrm{S}_{0} \Rightarrow \lambda G \forall x(\text { student }(x) \rightarrow G(x))(\text { work }): \mathrm{t} \Leftrightarrow_{\beta} \forall x(\text { student }(x) \rightarrow \text { work }(x))
\end{aligned}
$$

- big elephant, talented logician, alleged murderer demonstrate that $\mathrm{A}+\mathrm{N}$ constructions cannot be analysed as conjunction of two standard one-place predicates. In the general case, the constants big', talentd', alleged' representing the adjective meaning have type $\ll e, t>,<e, t \gg$.
- There is a frequent special case of so-called "interesective" or "referential" adjectives, however. A white elephant is an animal that is white and an elephant, a married logician a person who is married and is a logician. The denotation of an $A+N$ construction can be obtained by froming the intersection between the N denotation with an underlying set of "white objects" or "married persons" referred to by the adjective.

Reconsidering attributive adjectives [2]

- We can represent the special semantics of intersective adjectives as λ-expressions of the higher type (<<e,t>,<e,t>>), which use a lower type predicate (married*, white*) representing their specific lexical meaning representation:
$-\lambda F \lambda x\left[\operatorname{married}^{*}(x) \wedge F(x)\right]: \ll e, t>,<e, t \gg$
- For married student, we get:
$-\lambda F \lambda x\left[\operatorname{married}^{*}(x) \wedge F(x)\right]($ student' $):<e, t>$ $\Leftrightarrow_{\beta} \lambda x\left[\right.$ married $^{*}(x) \wedge$ student $\left.(x)\right]$

A general strategy for semantic modelling

- Select the type for expressions of a lexical category as high as needed
- to cover all lexical items of that category
- to fit into the compositional process of semantic construction
- Encode the often much simpler meaning of specific (sub-types) of lexical items as lambda expressions with an appropriate underlying predicate.
- This way, the requirements of a uniform and straightforward semantic construction and a simple and direct resulting representation of sentence meanings can be fullfilled at the same time (in many cases).

Semantics of relative clauses

- Syntactic structure provides non-local information about the relation holding between the relative pronoun and the empty (object) NP (here expressed via co-indexing)
- A pair of semantic composition rules transfers this information into the semantic interpretation: The empty NP translates to a variable, and later this variable is bound by abstraction, where the variable abstrcted over is read off the index of the relative pronoun.

Two more construction rules

- Empty NP rule:

If A is an empty NP node indexed with i, then $A \Rightarrow x_{i}$

- Relative clause rule:

If A is a relative clause with with daughters B and C, B a relative pronoun indexed with $\mathrm{i}, \mathrm{C} \Rightarrow \gamma:$ t, then
$\mathrm{A} \Rightarrow \lambda F \lambda \mathrm{x}_{\mathrm{i}}[\mathrm{Fx} \wedge \gamma]: \ll \mathrm{e}, \mathrm{t}>,<\mathrm{e}, \mathrm{t} \gg$

Quantificational NPs and transitive verbs

Quantificational NPs and transitive verbs

A composition problem: There is a type mismatch between subject NP, object NP and relational verb representation.

- every student $\Rightarrow \lambda F \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow F(x)\right)$: <<e,t>,t>
- a paper $\Rightarrow \lambda G \exists y\left(\operatorname{paper}^{\prime}(\mathrm{y}) \wedge G(\mathrm{y})\right): \ll \mathrm{e}, \mathrm{t}>, \mathrm{t}>$
- presented \Rightarrow present': <e,<e,t>>
... and an attempt for a solution: Raise the type of the firstorder relation:

```
present': <<<e,t>,t>,<e,t>>
```


Non-referential arguments

- John finds a unicorn $\mid=\exists x$ unicorn' (x)
- John seeks a unicorn $\mid \neq \exists x$ unicorn'(x)
- Subject position of verbs is always referential.
- Direct object position of some verbs is referential, of some other verbs isn't.
- Semantic representation pattern for referential verbs:

$$
\lambda Q \lambda x\left[Q\left(\lambda y\left[f i n d^{*}(y)(x)\right]\right)\right]: \lll e, t>, t>,<e, t \gg,
$$

where find*: <<e,t>,t>

Example

- presented $\Rightarrow \lambda Q \lambda x[Q(\lambda y[p r e s e n t *(y)(x)])]: \lll e, t>, t>,<e, t \gg$
- a paper $\Rightarrow \lambda G \exists z\left(\operatorname{paper}^{\prime}(z) \wedge G(z)\right): \ll e, t>, t>$
- presented a paper $\Rightarrow \lambda Q \lambda \times[Q(\lambda y[p r e s e n t *(y)(x)])]$
$\left(\lambda G \exists z\left(\operatorname{paper}^{\prime}(z) \wedge G(z)\right)\right)$
$\Leftrightarrow_{\beta} \lambda x\left[\lambda G \exists z\left(\operatorname{paper}^{\prime}(z) \wedge G(z)\right)\left(\lambda y\left[p^{2}\left(\operatorname{present}^{*}(\mathrm{y})(\mathrm{x})\right]\right)\right]\right.$
$\Leftrightarrow_{\beta} \lambda x\left[\exists z\left(\operatorname{paper}^{\prime}(z) \wedge \lambda y\left[\right.\right.\right.$ present $\left.\left.\left.^{*}(\mathrm{y})(\mathrm{x})\right](\mathrm{z})\right)\right]$
$\Leftrightarrow_{\beta} \lambda x\left[\exists z\left(\operatorname{paper}^{\prime}(z) \wedge \operatorname{present}^{*}(z)(x)\right)\right]$
- every student $\Rightarrow \lambda G \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow G(x)\right) \ll e, t>, t>$ $\Leftrightarrow_{\beta} \forall x\left(\right.$ student' $^{\prime}(x) \rightarrow \exists z\left(\right.$ paper $^{\prime}(z) \wedge$ present $\left.\left.^{*}(z)(x)\right)\right)$

