Semantic Theory
 Summer 2005
 Type theory and λ-abstraction

M. Pinkal / A. Koller

Noun phrases and FOL representations

John works.	work(john)
Somebody works	$\exists \mathrm{x}(\operatorname{work}(\mathrm{x}))$
Every student works	$\forall \mathrm{x}(\operatorname{student}(\mathrm{x}) \rightarrow \operatorname{work}(\mathrm{x}))$
No student works	$\neg \exists \mathrm{x}(\operatorname{student}(\mathrm{x}) \wedge$ work $(\mathrm{x}))$
John and Mary work	work $($ john $) \wedge$ work $($ mary $)$

A unified semantics for NPs? An attempt

John works.
john: e
work: <e,t>
work(john): t

Every student works.
every-student: e work: <e,t>
work(every-student): t
?

A type-theoretic solution

Inverting the functor-argument relation by treating oun phrases as second-order predicates:

Every student works.
every-student: <<e,t>,t> work: <e,t> every-student (work): t

Internal NP structure

Determiners like every/some/no take a common-noun denotation and return a second-order predicate: Determiners are functions from first-oder predicates to second-order predicates, i.e., two-place second-order relations:
every: <<e,t>,<<e,t>,t>> student: <e,t> every(student): <<e,t>,t> work: <e,t> every(student)(work): t

Towards a unified semantics of NPs

John works.
john: e work: <e,t> work(john): t

Every student works.
every-student: <<e,t>,t> work: <e,t> every-student (work): t

Towards a unified semantics of NPs

John works.
john: <<e,t>,t>
work: <e,t> john(work): t

Every student works.
every-student: <<e,t>,t> work: <e,t> every-student(work): t

Towards a unified semantics of NPs

„Type raising" of proper names from e to <<e,t>,t>:

John is represented by a second-order predicate that denotes a function from first-order predicates to truthvalues which returns 1 for a predicate φ iff φ applies to the entity John.

Type theory as a semantic representation language:Two problems

- Problem 1:

If we express quantification via second-order relations without quantifiers: How do we do inference?

- Problem 2:

Even (basic) type theory has problems with coverage

Another coverage problem

Swimming is healthy

swimming: <e, t> healthy <<e,t>,t>
healthy(swimming): t
Not smoking is healthy
Driving and drinking is dangerous

John drives and drinks
Some people drive and drink

The solution: λ-abstraction
$\lambda x[\operatorname{drive}(\mathrm{x}) \wedge \operatorname{drink}(\mathrm{x})$]
„to be an x such that x drives and drinks"
λ-abstraction is an operation that takes an expression and „opens" or „re-opens" specific argument positions by abstracting over a variable.
E.g., the result of abstraction over individual variable x in the formula drive $(x) \wedge d r i n k(x)$ results in the complex predicate $\lambda x[$ drive $(x) \wedge d r i n k(x)]$.

Syntax of λ-abstraction

If $\alpha \in \mathrm{WE}_{\tau}, v \in \operatorname{Var}_{\sigma}$, then $\lambda v \alpha \in \mathrm{WE}_{<\sigma, \tau\rangle}$.

Note: The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.

Example

drive: <e,t> x:e drink: <e,t> x:e
drive $(x): \mathrm{t} \quad \operatorname{drink}(\mathrm{x}): \mathrm{t}$
drive $(\mathrm{x}) \wedge \operatorname{drink}(\mathrm{x})$: t
$\lambda x[\operatorname{drive}(\mathrm{x}) \wedge \operatorname{drink}(\mathrm{x})]$: <e,t>

Example

Some people drive and drink

drive: <e,t> $x: e \quad$ drink: <e,t> $x: e$
drive (x): $\mathrm{t} \quad \operatorname{drink}(\mathrm{x}): \mathrm{t}$
some:<<e, t>,<<e,t>,t>> people: <ee,t> drive(x)^drink(x): t
some(people):<<e,t>,t> $\quad \lambda x[\operatorname{drive}(x) \wedge \operatorname{drink}(x)]:<e, t>$ some(people) $(\lambda x[\operatorname{drive}(x) \wedge \operatorname{drink}(x)]):$ t

Semantics of λ-expressions

- If $\alpha \in \mathrm{WE}_{\tau}, v \in \operatorname{Var}_{\sigma}$, then $[[\lambda v \alpha]]{ }^{\mathrm{M}, \mathrm{g}}$ is that function $\varphi \in$ $D_{<\sigma, \tau\rangle}$, such that for all $a \in D_{\sigma}: \varphi(a)=[[\alpha]]^{M, g[v / a]}$
- In general: $[[\lambda v \alpha(\beta)]]^{\mathrm{M}, \mathrm{g}}=[[\alpha]]^{\mathrm{M}, g\left[v /[[\beta]]^{\mathrm{M}, \mathrm{g}]}\right.}$
- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.

A syntactic shortcut for the evaluation of λ-expressions

- By the modified variable assignment, the value of the argument of the λ-expression is passed through its body and becomes the value of all occurrences of variables bound by the λ-operator.
- We obtain the same result, if we first substitute the free occurrences of the λ-variable in $\lambda v \alpha(\beta)$ by the argument β, and only then interpret the result:
$-[[\lambda v \alpha(\beta)]]^{\mathrm{M}, \mathrm{g}}=[[\alpha]]^{\mathrm{M}, \mathrm{g}[v /[\beta \beta] \mathrm{M}, \mathrm{g}]}$ to
$-[[\lambda v \alpha(\beta)]]^{M, g}=[[[\beta / v] \alpha]]^{M, g}$
- This is the basic idea behind the λ-calculus.

λ-conversion

- Are $\lambda v \alpha(\beta)$ and $[\beta / v] \alpha$ always equivalent?
$-\lambda x[\operatorname{drive}(\mathrm{x}) \wedge \operatorname{drink}(\mathrm{x})]$ (john) $=\operatorname{drive(john)}$ ^drink(john)
$-\lambda x[\operatorname{drive}(x) \wedge d r i n k(x)](y)=\operatorname{drive}(y) \wedge d r i n k(y)$
$-\lambda x[\forall y \operatorname{know}(x)(y)]$ (john) $=\forall y \operatorname{know}(j o h n)(y)$
$-\lambda \mathrm{x}[\forall \mathrm{y} \operatorname{know}(\mathrm{x})(\mathrm{y})](\mathrm{y}) \neq \forall \mathrm{y} \operatorname{know}(\mathrm{y})(\mathrm{y})$
- Let v, v^{\prime} be variables of identical type, α any well-formed expression.
v is free for v^{\prime} in α iff no free occurrence of v^{\prime} in α is in the scope of a quantifier or a λ-operator that binds v.

Conversion rules in the λ-calculus

- β-conversion:
$\lambda v \alpha(\beta) \Leftrightarrow{ }^{[\beta /]} \alpha$, if all free variables in β are free for v in α.
- α-conversion:
$\lambda v \alpha \Leftrightarrow \lambda v^{\left[v^{\prime} / v_{]}\right.} \alpha$, if v^{\prime} is free for v in α.
- η-conversion:
$\lambda v \alpha(v) \Leftrightarrow \alpha$

The relevant rule for semantic interpretation which we really need, is β-conversion in the left-to-right direction (β reduction), which allows to simplify representations.

Type theory as a semantic representation language:Two problems

- Problem 1:

If we express quantification via second-order relations without quantifiers: How do we do inference?

- Problem 2:

Even (basic) type theory has problems with coverage

Noun phrases interpretation again

- every student denotes a second-order property (<<e,t>,t>) which holds of a (first-oder) property ω iff all students are in ω.
- This semantic information can be straightforwardly encoded as a lambda term:
$\lambda G \forall x($ student $(x) \rightarrow G(x))$
- Accordingly, the determinator every can be represented as:
$\lambda F \lambda G \forall x(F(x) \rightarrow G(x))$

More noun phrases

John	$\lambda G\left[G\left(j^{*}\right)\right]$
Somebody	$\lambda G \exists x G(x)$
A student	$\lambda G \exists x(\operatorname{student}(\mathrm{x}) \wedge G(\mathrm{x}))$
No student	$\lambda G \neg \exists \mathrm{x}(\operatorname{student}(\mathrm{x}) \wedge G(\mathrm{x}))$
John	$\lambda G\left[G\left(j^{*}\right)\right]$
John and Mary work	$\lambda G\left[G\left(j^{\star}\right) \wedge G\left(\mathrm{~m}^{*}\right)\right]$

More determinators

a, some
no
$\lambda F \lambda G \exists x(F(x) \wedge G(x))$
$\lambda F \lambda G \neg \exists x(F(x) \wedge G(x))$

An example

Every student works

$\lambda F \lambda G \forall x(F(x) \rightarrow G(x))$ (student): <<ee,t>,t>
 $\lambda G \forall x($ student $(x) \rightarrow G(x))($ work $): t$
(by β-red.:) $\quad \forall x(\operatorname{student}(\mathrm{x}) \rightarrow$ work $(\mathrm{x}))$: t

