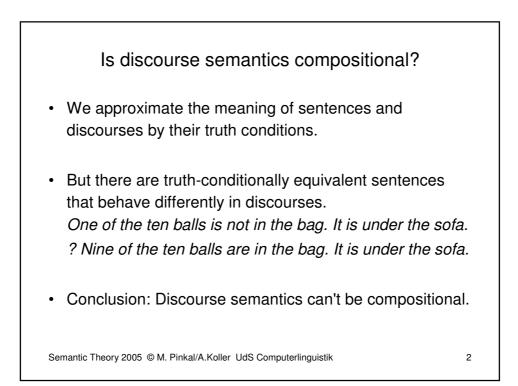
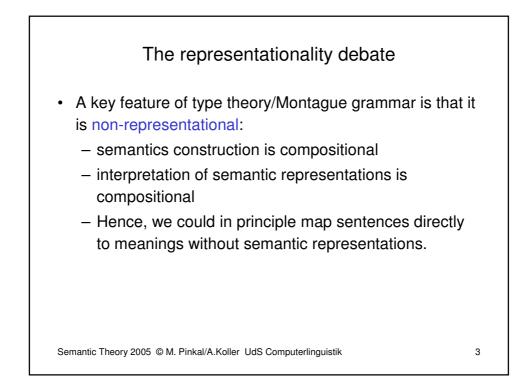
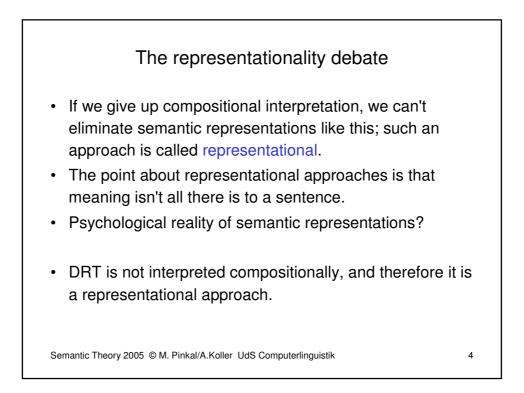
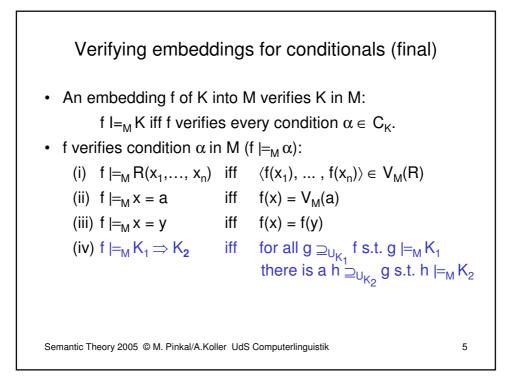
Semantic Theory Summer 2005 Dynamic Semantics and Compositionality

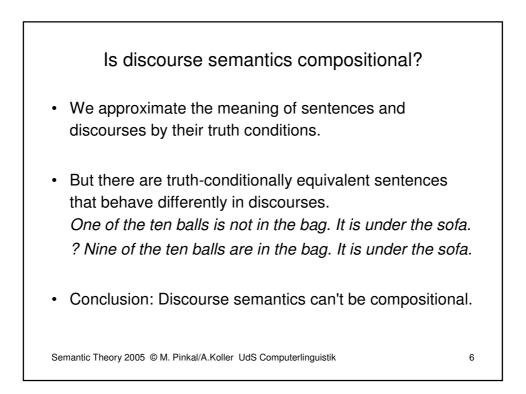
M. Pinkal / A. Koller

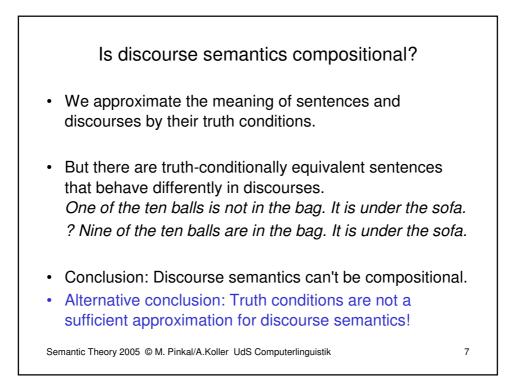


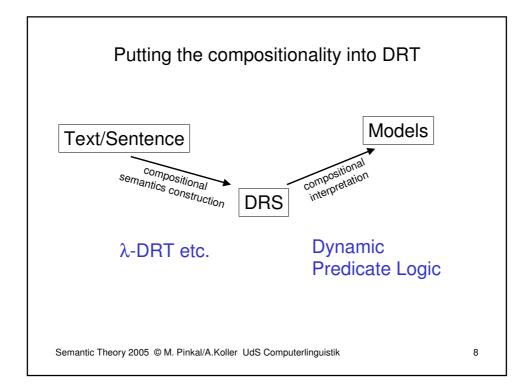


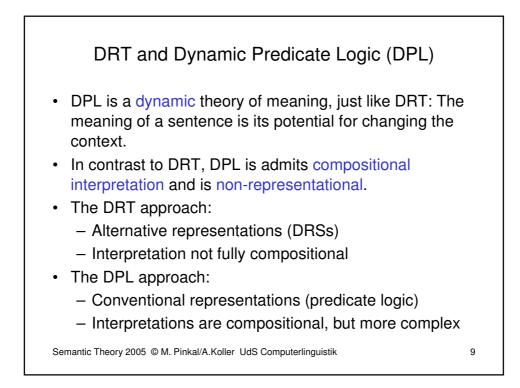


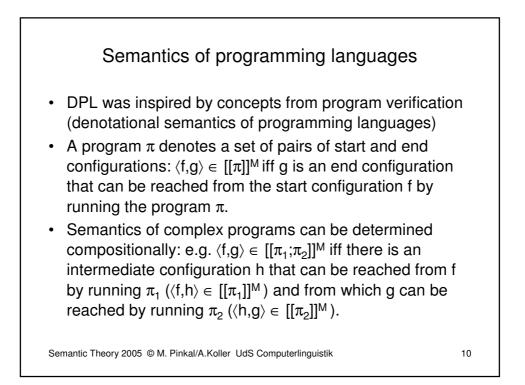










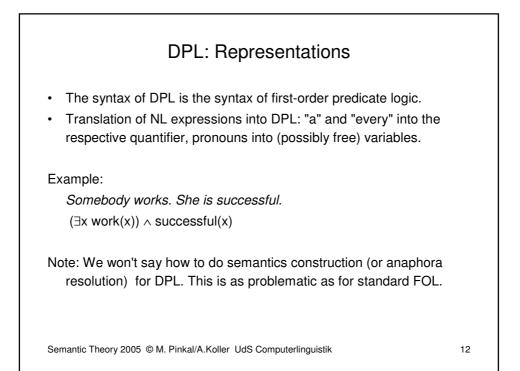


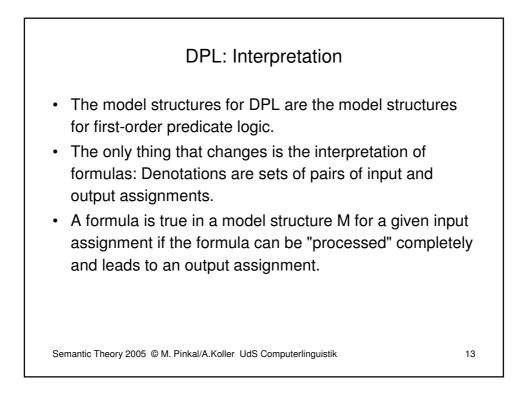
DPL: Formulas as programs

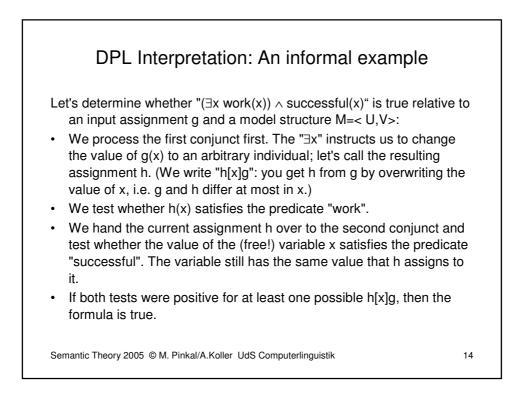
- Logical formulas are programs.
- · Contexts are configurations.
- Represent them as variable assignments.
- A formula denotes a set of pairs of start and end configurations (input and output assignments).
- Certain formulas and connectives are instructions for changing the assignments. E.g. "∃x" modifies the value of x by overwriting it with an arbitrary individual from the universe.
- Other formulas are tests: "Fx" checks whether the value of x in the current assignment has the property F.

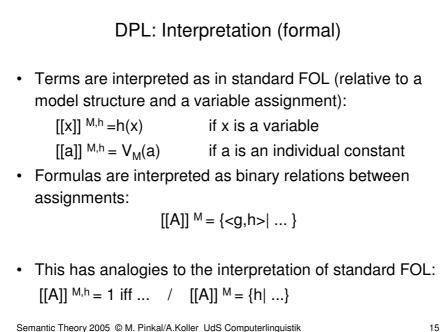
Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

11



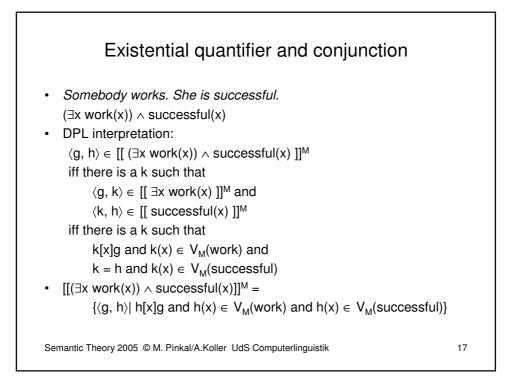


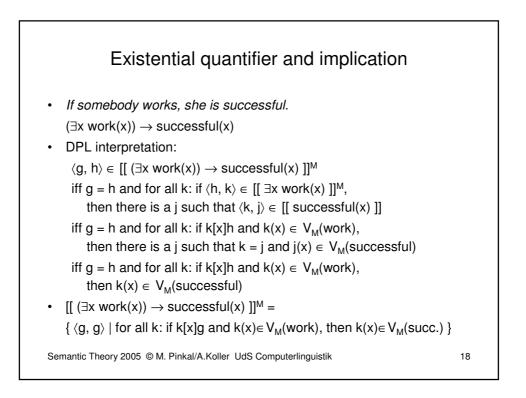


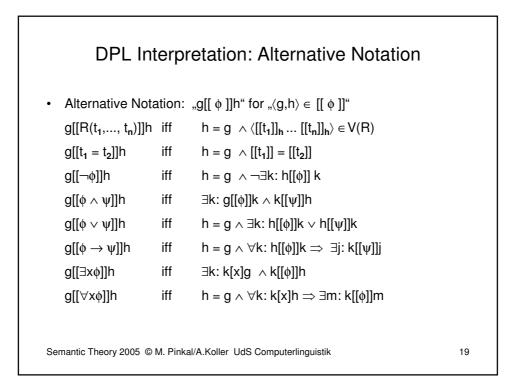


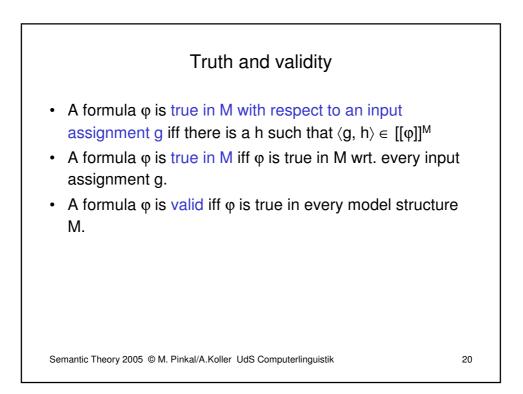
Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

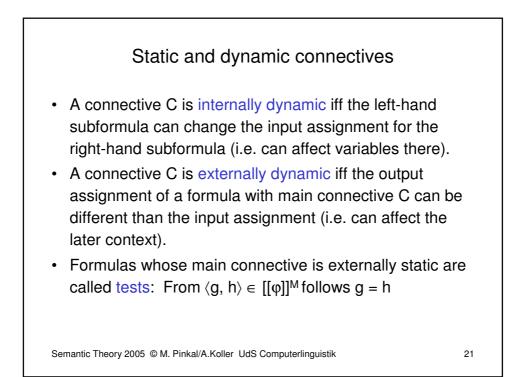
DPL: Interpretation (connectives) Terms: $[[x]]^{M,h} = h(x)$ if x is a variable [[a]] $^{M,h} = V_M(a)$ if a is an individual constant Formulas: $[[R(t_1,...,t_n)]]^M = \{ \langle g,h \rangle \mid h = g \land \langle [[t_1]]_h \dots [[t_n]]_h \rangle \in V_M(R) \}$ $[[t_1 = t_2]]^{M}$ $= \{ \langle \mathbf{g}, \mathbf{h} \rangle \mid \mathbf{h} = \mathbf{g} \land [[\mathbf{t}_1]]_{\mathbf{h}} = [[\mathbf{t}_2]]_{\mathbf{h}} \}$ $[[\phi \land \psi]]^{\mathsf{M}}$ $= \{ \langle g,h \rangle \mid \exists k: \langle g,k \rangle \in [[\phi]]^{\mathsf{M}} \land \langle k,h \rangle \in [[\psi]]^{\mathsf{M}} \}$ [[∃xø]]M $= \{ \langle g,h \rangle \mid \exists k: k[x]g \land \langle k,h \rangle \in [[\phi]]^{\mathsf{M}} \}$ $= \{ \langle g,h \rangle \mid h = g \land \forall k: \langle h,k \rangle \in [[\phi]]^M \Longrightarrow \exists j: \langle k,j \rangle \in [[\psi]]^M \}$ $[[\phi \rightarrow \psi]]^{M}$ $= \{ \langle g, h \rangle \mid h = g \land \neg \exists k : \langle h, k \rangle \in [[\phi]]^M \}$ [[¢]]^M $= \{ \langle g,h \rangle \mid h = g \land \exists k: \langle h,k \rangle \in [[\phi]]^{M} \lor \langle h,k \rangle \in [[\psi]]^{M} \}$ $[[\phi \lor \psi]]^{\mathsf{M}}$ $= \{ \langle g,h \rangle \mid h = g \land \forall k: k[x]h \Longrightarrow \exists m: \langle k,m \rangle \in [[\phi]]^M \}$ [[∀xø]]^M Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 16











Overview of DPL connectives			
connective	externally	internally	
-	S		
^	d	d	
~	S	S	
\rightarrow	S	d	
\forall	S	d	
Е	d	d	
Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik			22

