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Is discourse semantics compositional?

• We approximate the meaning of sentences and 

discourses by their truth conditions.

• But there are truth-conditionally equivalent sentences 

that behave differently in discourses.

One of the ten balls is not in the bag. It is under the sofa.

? Nine of the ten balls are in the bag. It is under the sofa.

• Conclusion: Discourse semantics can't be compositional.
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The representationality debate

• A key feature of type theory/Montague grammar is that it 

is non-representational:

– semantics construction is compositional

– interpretation of semantic representations is 

compositional

– Hence, we could in principle map sentences directly 

to meanings without semantic representations.
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The representationality debate

• If we give up compositional interpretation, we can't 

eliminate semantic representations like this; such an 

approach is called representational.

• The point about representational approaches is that 

meaning isn't all there is to a sentence.

• Psychological reality of semantic representations?

• DRT is not interpreted compositionally, and therefore it is 

a representational approach.
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Verifying embeddings for conditionals (final)

• An embedding f of K into M verifies K in M: 

f I=M K iff f verifies every condition α ∈ CK.

• f verifies condition α in M (f |=M α):

(i) f |=M R(x1,…, xn) iff     〈f(x1), ... , f(xn)〉 ∈ VM(R)

(ii) f |=M x = a iff     f(x) = VM(a)

(iii) f |=M x = y iff     f(x) = f(y)

(iv) f |=M K1 ⇒ K
2

iff     for all g ⊇UK1
f s.t. g |=M K1 

there is a h ⊇UK2
g s.t. h |=M K2
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Is discourse semantics compositional?

• We approximate the meaning of sentences and 

discourses by their truth conditions.

• But there are truth-conditionally equivalent sentences 

that behave differently in discourses.

One of the ten balls is not in the bag. It is under the sofa.

? Nine of the ten balls are in the bag. It is under the sofa.

• Conclusion: Discourse semantics can't be compositional.



4

Semantic Theory 2005  © M. Pinkal/A.Koller  UdS Computerlinguistik 7

Is discourse semantics compositional?

• We approximate the meaning of sentences and 

discourses by their truth conditions.

• But there are truth-conditionally equivalent sentences 

that behave differently in discourses.

One of the ten balls is not in the bag. It is under the sofa.

? Nine of the ten balls are in the bag. It is under the sofa.

• Conclusion: Discourse semantics can't be compositional.

• Alternative conclusion: Truth conditions are not a 

sufficient approximation for discourse semantics!
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Putting the compositionality into DRT

Text/Sentence

DRS

Models

compositional
semantics construction

compositio
nal

interpretation

Dynamic
Predicate Logic

λ-DRT etc.
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DRT and Dynamic Predicate Logic (DPL)

• DPL is a dynamic theory of meaning, just like DRT: The 

meaning of a sentence is its potential for changing the 

context.

• In contrast to DRT, DPL is admits compositional

interpretation and is non-representational. 

• The DRT approach:

– Alternative representations (DRSs)

– Interpretation not fully compositional

• The DPL approach:

– Conventional representations (predicate logic)

– Interpretations are compositional, but more complex

Semantic Theory 2005  © M. Pinkal/A.Koller  UdS Computerlinguistik 10

Semantics of programming languages

• DPL was inspired by concepts from program verification 

(denotational semantics of programming languages)

• A program π denotes a set of pairs of start and end 

configurations: 〈f,g〉 ∈ [[π]]M iff g is an end configuration 

that can be reached from the start configuration f by 

running the program π.

• Semantics of complex programs can be determined 

compositionally: e.g. 〈f,g〉 ∈ [[π1;π2]]
M iff there is an 

intermediate configuration h that can be reached from f 

by running π1 (〈f,h〉 ∈ [[π1]]
M ) and from which g can be 

reached by running π2 (〈h,g〉 ∈ [[π2]]
M ).
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DPL: Formulas as programs

• Logical formulas are programs.

• Contexts are configurations.

• Represent them as variable assignments.

• A formula denotes a set of pairs of start and end 

configurations (input and output assignments).

• Certain formulas and connectives are instructions for 

changing the assignments. E.g. "∃x" modifies the value 

of x by overwriting it with an arbitrary individual from the 

universe.

• Other formulas are tests: "Fx" checks whether the value 

of x in the current assignment has the property F.
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DPL: Representations

• The syntax of DPL is the syntax of first-order predicate logic. 

• Translation of NL expressions into DPL: "a" and "every" into the

respective quantifier, pronouns into (possibly free) variables.

Example:

Somebody works. She is successful.

(∃x work(x)) ∧ successful(x) 

Note: We won't say how to do semantics construction (or anaphora

resolution)  for DPL. This is as problematic as for standard FOL.
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DPL: Interpretation

• The model structures for DPL are the model structures 

for first-order predicate logic.

• The only thing that changes is the interpretation of 

formulas: Denotations are sets of pairs of input and 

output assignments.

• A formula is true in a model structure M for a given input 

assignment if the formula can be "processed" completely 

and leads to an output assignment.
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DPL Interpretation: An informal example

Let's determine whether "(∃x work(x)) ∧ successful(x)“ is true relative to 

an input assignment g and a model structure M=< U,V>:

• We process the first conjunct first. The "∃x" instructs us to change 

the value of g(x) to an arbitrary individual; let's call the resulting 

assignment h. (We write "h[x]g": you get h from g by overwriting the 

value of x, i.e. g and h differ at most in x.)

• We test whether h(x) satisfies the predicate "work".

• We hand the current assignment h over to the second conjunct and

test whether the value of the (free!) variable x satisfies the predicate 

"successful". The variable still has the same value that h assigns to 

it.

• If both tests were positive for at least one possible h[x]g, then the 

formula is true.
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DPL: Interpretation (formal)

• Terms are interpreted as in standard FOL (relative to a 

model structure and a variable assignment):

[[x]] M,h =h(x) if x is a variable

[[a]] M,h = VM(a) if a is an individual constant

• Formulas are interpreted as binary relations between 

assignments: 

[[A]] M = {<g,h>| ... }

• This has analogies to the interpretation of standard FOL:

[[A]] M,h = 1 iff ...    /    [[A]] M = {h| ...} 
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DPL: Interpretation (connectives)

• Terms: [[x]] M,h =h(x) if x is a variable

[[a]] M,h = VM(a) if a is an individual constant

• Formulas:

[[R(t1,..., tn)]]
M = { 〈g,h〉 | h = g ∧ 〈[[t1]]h ... [[tn]]h〉 ∈ VM(R)}

[[t1 = t2]]
M = { 〈g,h〉 | h = g ∧ [[t1]]h = [[t2]]h} 

[[φ ∧ ψ]]M = { 〈g,h〉 | ∃k: 〈g,k〉 ∈ [[φ]]M ∧ 〈k,h〉 ∈ [[ψ]]M }

[[∃xφ]]M = { 〈g,h〉 | ∃k: k[x]g ∧ 〈k,h〉 ∈ [[φ]]M}

[[φ → ψ]]M = { 〈g,h〉 | h = g ∧ ∀k: 〈h,k〉 ∈ [[φ]]M ⇒ ∃j: 〈k,j〉 ∈ [[ψ]]M}

[[¬φ]]M = { 〈g,h〉 | h = g ∧ ¬∃k: 〈h,k〉 ∈ [[φ]]M}

[[φ ∨ ψ]]M = { 〈g,h〉 | h = g ∧ ∃k: 〈h,k〉 ∈ [[φ]]M ∨ 〈h,k〉 ∈ [[ψ]]M}

[[∀xφ]]M = { 〈g,h〉 | h = g ∧ ∀k: k[x]h ⇒ ∃m: 〈k,m〉 ∈ [[φ]]M}
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Existential quantifier and conjunction

• Somebody works. She is successful.

(∃x work(x)) ∧ successful(x)

• DPL interpretation:

〈g, h〉 ∈ [[ (∃x work(x)) ∧ successful(x) ]]M

iff there is a k such that

〈g, k〉 ∈ [[ ∃x work(x) ]]M and

〈k, h〉 ∈ [[ successful(x) ]]M

iff there is a k such that

k[x]g and k(x) ∈ VM(work) and

k = h and k(x) ∈ VM(successful)

• [[(∃x work(x)) ∧ successful(x)]]M = 

{〈g, h〉| h[x]g and h(x) ∈ VM(work) and h(x) ∈ VM(successful)}
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Existential quantifier and implication

• If somebody works, she is successful.

(∃x work(x)) → successful(x)

• DPL interpretation:

〈g, h〉 ∈ [[ (∃x work(x)) → successful(x) ]]M

iff g = h and for all k: if 〈h, k〉 ∈ [[ ∃x work(x) ]]M, 

then there is a j such that 〈k, j〉 ∈ [[ successful(x) ]]

iff g = h and for all k: if k[x]h and k(x) ∈ VM(work),

then there is a j such that k = j and j(x) ∈ VM(successful)

iff g = h and for all k: if k[x]h and k(x) ∈ VM(work),

then k(x) ∈ VM(successful)

• [[ (∃x work(x)) → successful(x) ]]M =

{ 〈g, g〉 | for all k: if k[x]g and k(x)∈VM(work), then k(x)∈VM(succ.) }
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DPL Interpretation: Alternative Notation

• Alternative Notation:  „g[[ φ ]]h“ for „〈g,h〉 ∈ [[ φ ]]“

g[[R(t
1
,..., t

n
)]]h iff h = g  ∧ 〈[[t

1
]]

h 
... [[t

n
]]

h
〉 ∈V(R)

g[[t
1

= t
2
]]h iff h = g  ∧ [[t

1
]] = [[t

2
]]

g[[¬φ]]h iff h = g  ∧ ¬∃k: h[[φ]] k

g[[φ ∧ ψ]]h iff ∃k: g[[φ]]k ∧ k[[ψ]]h

g[[φ ∨ ψ]]h iff h = g ∧ ∃k: h[[φ]]k ∨ h[[ψ]]k

g[[φ → ψ]]h iff h = g ∧ ∀k: h[[φ]]k ⇒ ∃j: k[[ψ]]j

g[[∃xφ]]h iff ∃k: k[x]g  ∧ k[[φ]]h 

g[[∀xφ]]h iff h = g ∧ ∀k: k[x]h ⇒ ∃m: k[[φ]]m
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Truth and validity

• A formula ϕ is true in M with respect to an input 

assignment g iff there is a h such that 〈g, h〉 ∈ [[ϕ]]M

• A formula ϕ is true in M iff ϕ is true in M wrt. every input 

assignment g.

• A formula ϕ is valid iff ϕ is true in every model structure 

M.
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• A connective C is internally dynamic iff the left-hand 

subformula can change the input assignment for the 

right-hand subformula (i.e. can affect variables there).

• A connective C is externally dynamic iff the output 

assignment of a formula with main connective C can be 

different than the input assignment (i.e. can affect the 

later context).

• Formulas whose main connective is externally static are 

called tests:  From 〈g, h〉 ∈ [[ϕ]]M follows g = h

Static and dynamic connectives
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connective

¬

∧

∨

→

∀

∃

externally

s

d

s

s

s

d

internally

--

d

s

d

d

d

Overview of DPL connectives
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Equivalence

• Satisfaction set of a formula ϕ in M:

\ϕ\M = { g | ∃h: 〈g, h〉 ∈ [[ϕ]]M }

• s-equivalence (static equivalence):

ϕ ⇔s ψ iff for all M: \ϕ\M = \ψ\M

• Equivalence (dynamic/full equivalence):

ϕ ⇔ ψ iff for all M: [[ϕ]]M = [[ψ]]M

• Equivalent formulas are always statically equivalent too.
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Logical properties of DPL

• The following equivalences hold:

– (∃xA) ∧ B ⇔ ∃x(A ∧ B)

– (∃xA) → B ⇔ ∀x(A → B)

– (A ∧ B) ∧ C ⇔ A ∧ (B ∧ C) 

– A → (B → C) ⇔ (A ∧ B) → C

– A ∨ B ⇔ B ∨ A 

• The following equivalences don't hold:

– ¬∀xA ⇔ ∃x¬A

– A ∧ B ⇔ s B ∧ A

– A ⇔ s A ∧ A
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Definability of connectives

• ∨, → and ∀ can be defined from ¬, ∧ und ∃.

• But not vice versa!

• Equivalences:

A → B ⇔ ¬(A ∧ ¬B) 

A ∨ B ⇔ ¬(¬A ∧ ¬B)

A ∨ B ⇔ (¬A) → B

∀x A ⇔ ¬∃x¬A

• Non-equivalences:

A ∧ B ⇔ ¬(A → ¬B)

A ∧ B ⇔s ¬(¬A ∨ ¬B)

A → B ⇔s ¬A ∨ B

∃xA ⇔ ¬∀x¬A
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Entailment

• Static entailment:

ϕ I=s ψ iff for all M, g: 

If ϕ is true in M for g, then ψ is true in M for g.

• Meaning Inclusion:

ϕ ≤ ψ iff [[ϕ ]]M ≤ [[ψ ]]M

• Dynamic entailment:

ϕ I= ψ iff for all M,g,h: 

If 〈g, h〉 ∈ [[ϕ]], then there is a k s.t. 〈h, k〉 ∈ [[ψ]].
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DPL: Summary

• We can give a compositional interpretation to a theory of 

dynamic semantics: relation between variable 

assignments.

• DPL uses standard syntax of predicate logic, but the 

different interpretation makes for interesting logical 

properties; e.g., some equivalences break.

• We can translate DRSs into DPL formulas and further 

into static PL formulas (see exercise).

• DRT can be equipped directly with a DPL-style 

interpretation.
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Putting the compositionality into DRT

Text/Sentence

DRS

Models

compositional
semantics construction
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Dynamic
Predicate Logic

λ-DRT etc.
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Dynamic semantics and semantics construction

• DPL is compositional: The denotations of DPL formulas 

can be determined solely from the denotations of the 

subexpressions.

• DPL is a first-order logic, and so doesn't say anything 

about semantics construction.

• Question: Can we get compositional semantics 

construction for dynamic theories of meaning?

• Try to combine

– type theory (higher-order logic / λ-calculus) and

– first-order dynamic semantics (e.g. DRT or DPL)
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Higher-order dynamic semantics

• Our goal now: Get an idea of why getting a clean higher-

order dynamic semantics formalism is not trivial.

• Differences between variables and discourse referents.

• Some formalisms:

– Dynamic Montague Grammar

(Groenendijk & Stokhof 1990)

– Lambda-DRT (Bos et al. 1993, Kuschert et al. 1996)

– Compositional DRT (Muskens 1996)

– Dynamic Lambda Calculus (Kuschert 1998)
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• every student ⇒ λG

alternative notation:  λG [ ∅ | [ z | student(z) ] ⇒ G(z) ]

• works ⇒ λx [ ∅ | work(x) ]

An expression consists of a lambda prefix and a 

(partially instantiated) DRS.

Naive λ-DRT: just allow λ-abstraction over DRSs

z

student(z)
⇒ G(x)
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Naive λ-DRT: β-reduction of λ-DRSs

• every student works

⇒ λG[ ∅ | [ z | student(z) ] ⇒ G(z) ]](λx.[ ∅ | work(x) ])

⇔ [ ∅ | [ z | student(z) ] ⇒ λx.[ ∅ | work(x) ](z) ] 

⇔ [ ∅ | [ z | student(z) ] ⇒ [ ∅ | work(z) ]]
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• a student ⇒ λG ([ z | student(z) ]; G(z))

• works         ⇒ λx [ ∅ | work(x) ]

• A student works

⇒ λG ([ z | student(z) ];G(z))(λx.[ ∅ | work(x)])

⇔ [ z | student(z) ]; λx.[ ∅ | work(x)](z)

⇔ [ z | student(z) ]; [ ∅ | work(z)]

⇔ [ z | student(z), work(z)]

λ -DRT: The "Merge" operation
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Merge

• The "merge" operation on DRSs combines two DRSs 

(conditions and universes).

• It has a similar function as the beta reduction in type 

theory: Replace a complex formula (the ";"-combination 

of two DRSs) by an equivalent simpler formula.

• It is also similar to DPL conjunction.

• Let K1 = [ U1 | C1 ] and K2 = [ U2 | C2 ]. 

We define: K1; K2 =  [ U1 ∪ U2 | C1 ∪ C2 ]

under the assumption that no discourse referent 

u∈ U2 occurs free in a condition γ ∈ C1.
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• A student works. She is successful.

• Compositional analysis:

• λK λK‘(K;K‘)([ z | student(z), work(z)])([|successful(z)])

⇔ λK‘([z | student(z), work(z)];K‘)([|successful(z)])

⇔ [z | student(z), work(z)];[|successful(z)]

⇔ [z | student(z), work(z), successful(z)]

Via the interaction of β-reduction and DRS-binding, 

discourse referents are "captured"!

Naive λ-DRT: The problem

?
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Higher-order DRT: The challenge

• Via the interaction of β-reduction and DRS-binding, 

discourse referents are captured.

• But the β-reduced DRS must still be equivalent to the 

original DRS!

• This means that we somehow have to encode the 

potential for capturing discourse referents into the 

denotation of a λ-DRS. Getting this right is tricky.

• Discourse referents and bound variables behave 

differently! (Discourse referents may be captured.)



19

Semantic Theory 2005  © M. Pinkal/A.Koller  UdS Computerlinguistik 37

Compositional DRT

• The most transparent formalism of higher-order dynamic 

semantics is Muskens' Compositional DRT.

• Realise discourse referents as individual constants.

• Encode value assignments for the discourse referents 

directly into terms of (static) type theory.

• Uses big terms and big types. Representations remain 

reasonably readable by using notational macros.

Semantic Theory 2005  © M. Pinkal/A.Koller  UdS Computerlinguistik 38

Summary

• The quest for compositional dynamic semantics.

• Dynamic Predicate Logic (DPL):

– Use standard syntax of predicate logic

– with a compositional dynamic interpretation.

– This is still first-order, so the usual problems with 

semantics construction apply.

• Higher-order theories of dynamic semantics:

– Interaction of β-reduction and DRS-binding "captures" 

discourse referents.

– Challenge: Build a formalism that models this properly.


