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1 Type theory: Lexicon

(a) Proper names:
John ⇒ λF.F (j∗)

(b) Determiners:
every ⇒ λFλG∀x.(F (x) → G(x))
a ⇒ λFλG∃x.(F (x) ∧G(x))
no ⇒ λFλG¬∃x.(F (x) ∧G(x))

(c) Most content words are simply analysed as constants (note: transitive verbs get
type 〈〈〈e, t〉, t〉, 〈e, t〉〉). But sometimes, the semantics of a word can be represented
more precisely by a complex term, e.g.

– edible ⇒ λx3∃y.eat∗(x)(y)
– unmarried ⇒ λx¬∃y.is married to′(y)(x)

2 Modal Logic

Terms:

[[x]]M,g,w,t = g(x) if x is a variable
[[a]]M,g,w,t = VM (a) if a is a constant.

Formulas:
[[R(t1, . . . , tn)]]M,g,w,t = 1 iff 〈[[t1]]M,g,w,t, . . . , [[tn]]M,g,w,t〉 ∈ VM (R)(w, t)
[[t1 = t2]]M,g,w,t = 1 iff [[t1]]M,g,w,t = [[t2]]M,g,w,t

[[¬ϕ]]M,g,w,t = 1 iff [[ϕ]]M,g,w,t = 0
[[ϕ ∧ ψ]]M,g,w,t = 1 iff [[ϕ]]M,g,w,t = 1 and [[ψ]]M,g,w,t = 1
[[ϕ ∨ ψ]]M,g,w,t = 1 iff [[ϕ]]M,g,w,t = 1 or [[ψ]]M,g,w,t = 1
[[∃xϕ]]M,g,w,t = 1 iff there is u ∈ UM , [[ϕ]]M,g[x/a],w,t = 1
[[∀xϕ]]M,g,w,t = 1 iff for all u ∈ UM , [[ϕ]]M,g[x/a],w,t = 1
[[2ϕ]]M,g,w,t = 1 iff for all w′ ∈W , [[ϕ]]M,g,w′,t = 1
[[3ϕ]]M,g,w,t = 1 iff there is w′ ∈W , [[ϕ]]M,g,w′,t = 1
[[Fϕ]]M,g,w,t = 1 iff there is t′ > t, [[ϕ]]M,g,w,t′ = 1
[[Gϕ]]M,g,w,t = 1 iff for all t′ > t, [[ϕ]]M,g,w,t′ = 1
[[Pϕ]]M,g,w,t = 1 iff there is t′ < t, [[ϕ]]M,g,w,t′ = 1
[[Hϕ]]M,g,w,t = 1 iff for all t′ < t, [[ϕ]]M,g,w,t′ = 1



3 Nested Cooper Storage

Transitive verbs are now analysed as constants of type 〈e, 〈e, t〉〉.

(a) Storage:
B ⇒ 〈γ,Γ〉 B is an NP node
C ⇒ 〈β,∆〉 β ∈WE〈e,τ〉
A ⇒ 〈β(xi),∆ ∪ {〈γ,Γ〉i}〉 i ∈ N is a new index

(b) Retrieval:
A ⇒ 〈α,∆ ∪ {〈γ,Γ〉i}〉 A is any sentence node
A ⇒ 〈γ(λxi.α),∆ ∪ Γ〉

4 Dominance graphs: Semantics construction

S → NP VP: VP → TV NP:

NP → Det N’: NP → PN:

N’ → N PP:

lam �
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N’ → N:

PP → P NP:

5 Dominance graphs: Solving

The three rules of the dominance graph solver:

(a) Choice: If a node u has two dominance parents v and w, generate two new domi-
nance graphs containing the edges (v, w) and (w, v), and continue the search for
solved forms for both new graphs.

(b) Parent Normalisation: If (u, v) is a dominance edge, and v has a father w over a
tree edge, replace (u, v) by (u,w).

(c) Redundancy Elimination: If e = (u, v) is an edge and there is a path from u to v
that doesn’t use e, delete e from the dominance graph.



6 DRT: Syntax and Semantics

A discourse representation structure (DRS) K is a pair 〈UK , CK〉 where

– UK is a set of discourse referents

– CK is a set of conditions.

Conditions:

R(u1, . . . , un) R is an n-place relation, ui ∈ UK

u = v u, v ∈ UK

u = a u ∈ UK , a a proper name
K1 ⇒ K2 K1 and K2 DRSs
K1 ∨K2 K1 and K2 DRSs
¬K1 K1 is a DRS

7 DRT: Embedding, verifying embedding

Let UD be a set of discourse referents, K = 〈UK , CK〉 a DRS with UK ⊆ UD, M =
〈UM , VM 〉 a model structure of first-order predicate logic that is suitable for K. An
embedding of UD into M is a (partial) function that assigns individuals from UM to
discourse referents.

An embedding f verifies the DRS K in M (f |=M K) iff

(a) UK ⊆ Dom(f) and

(b) f verifies each condition α ∈ CK .

f verifies a condition α in M (f |=M α) in the following cases:

f |=M R(u1, . . . , un) iff 〈f(u1), . . . , f(un)〉 ∈ VM (R)
f |=M u = v iff f(u) = f(v)
f |=M u = a iff f(u) = VM (a)
f |=M K1 ⇒ K2 iff for all g ⊇UK1

f such that g |=M K1,
there is h ⊇UK2

g such that h |=M K2

f |=M ¬K1 iff there is no g ⊇UK1
f such that g |=M K1

f |=M K1 ∨K2 iff there is a g1 ⊇UK1
f such that g1 |=M K1,

or there is a g2 ⊇UK2
f such that g2 |=M K2.

8 Presuppositions (van der Sandt)

A proto-DRS is a triple 〈UK , CK , AK〉, where

– UK is a set of discourse referents

– CK is a set of conditions

– AK is a set of “anaphoric” (alpha-) DRSs.



9 Resolution of α-DRSs

Let K and K ′ be proto-DRSs such that K ′ is a sub-DRS of K. Let γ = αxKs be an
alpha-free alpha-DRS in K ′, and let Kt be a sub-DRS of K that is accessible for γ.

(a) Accommodation: Remove γ from K ′, and extend Kt with UKs and CKs .

(b) Binding: Let further y ∈ UKt be a discourse referent that is suitable for γ. Then
remove γ from K ′, and extend Kt with UKs and CKs and the condition x = y.

10 DPL: Interpretation

Terms:

[[x]]M,h = h(x) if x is a variable
[[a]]M,h = VM (a) if a is a constant.

Formulas:

[[R(t1, . . . , tn)]]M = {〈g, h〉 | h = g and 〈[[t1]]M,h, . . . , [[tn]]M,h〉 ∈ VM (R)}
[[t1 = t2]]M = {〈g, h〉 | h = g and [[t1]]M,h = [[t2]]M,h}
[[¬ϕ]]M = {〈g, h〉 | h = g and ex. no k s.t. 〈g, k〉 ∈ [[ϕ]]M}
[[ϕ ∧ ψ]]M = {〈g, h〉 | ex. k s.t. 〈g, k〉 ∈ [[ϕ]]M and 〈k, h〉 ∈ [[ψ]]M}
[[ϕ ∨ ψ]]M = {〈g, h〉 | h = g and ex. k s.t. 〈g, k〉 ∈ [[ϕ]]M or 〈g, k〉 ∈ [[ψ]]M}
[[ϕ→ ψ]]M = {〈g, h〉 | h = g and for all k: if 〈g, k〉 ∈ [[ϕ]]M , then ex. j s.t. 〈k, j〉 ∈ [[ψ]]M}
[[∃x.ϕ]]M = {〈g, h〉 | ex. k[x]g s.t. 〈k, h〉 ∈ [[ϕ]]M}
[[∀x.ϕ]]M = {〈g, h〉 | h = g and for each k[x]g, there is an m s.t. 〈k,m〉 ∈ [[ϕ]]M}

11 DPL: Truth, equivalence, entailment

(a) Truth and validity:

– A formula ϕ is true in M with respect to an input assignment g iff there is a
h s.t. 〈g, h〉 ∈ [[ϕ]]M .

– A formula ϕ is true in M iff ϕ is true in M with respect to every input
assignment.

– ϕ is valid iff it is true in every model structure.

(b) Notions of equivalence:

– Satisfaction set : \ϕ\M = {g | exists h s.t. 〈g, h〉 ∈ [[ϕ]]M}
– s-equivalence (static equivalence): ϕ⇔S ψ iff for all M , \ϕ\M = \ψ\M

– full equivalence (dynamic equivalence): ϕ⇔ ψ iff for all M , [[ϕ]]M = [[ψ]]M

(c) Notions of entailment:

– Static entailment : ϕ |=S ψ iff for all M , g: If ϕ is true wrt. M and g, then ψ
is true wrt. M and g.

– Meaning inclusion: ϕ ≤ ψ iff [[ϕ]]M ⊆ [[ψ]]M .
– Dynamic entailment : ϕ |= ψ iff for all M , g, h: if 〈g, h〉 ∈ [[ϕ]]M , then there

exists k s.t. 〈h, k〉 ∈ [[ψ]]M .
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