,Semantic Theory" SS 05 Exam Materials

1 Type theory: Lexicon

(a) Proper names:
John = AF.F(j*)

(b) Determiners:
every = AFAGVz.(F(z) — G(x))
a= AFAG3z.(F(z) N G(x))
no = AFAG—3z.(F(z) A G(z))

(c) Most content words are simply analysed as constants (note: transitive verbs get
type (((e, t),t), (e, t))). But sometimes, the semantics of a word can be represented
more precisely by a complex term, e.g.

— edible = Az{C3y.eat* (x)(y)
— unmarried = Az—Jy.is_married_to’(y)(z)

2 Modal Logic

Terms:

[z] M9t = g(x) if z is a variable
[[a]]M»g,w,t = Vap(a) if a is a constant.

Formulas:
(Rt )]0 = 1 (] 0, ]9 € Vig(R)(w, )
[t1 = tQ]]M,g,w,t =1 iff [[tl]]M,g,w,t _ [[t2]]M7g,w7t
II_\SO]]Mugy"LUyt =1 iff [[QD]]M’g’w’t —0
[p A p]Mgwt = 1 iff [o]Mowt =1 and [Y]Mowt =1
[ V] Mot =1 iff [ M9t =1 or [ Mowt =1
[[Elx(p]]M’g’w’t =1 iff there is u € Uy, [[gp]]Mvg[m/aLmt -1
[Vap]Mowt = 1 iff for all u € Uy, [@]M9le/alwt — 1
[[D<P]]M’g’w’t =1 iff for all w’ € W, [[(pﬂM,g,w’,t -1
[[<><P]]M’g’w’t =1 iff there is w’' € W, [[w]]Mvg»w’,t -1
[Fp] 9wt =1 iff there is ¢’ > t, [[w]]M,g,w,t' -1
[Gp]Mowt =1 iff for all t' > ¢, [[(P]]M,g,w,t’ 1
[Po]M9wt =1 iff there is ¢’ < t, [[w]]M,g,w,t' -1
[Hep]M9wt =1 iff for all t' < ¢, [[QP]]M,g,w,t’ 1



3 Nested Cooper Storage
Transitive verbs are now analysed as constants of type (e, (e, t)).

(a) Storage:

B = (v, B is an NP node
C = <57 A> ﬁ € WE<577
A = (B(x),AU{(y,I');}) i€ Nisanew index

(b) Retrieval:

A = (o,AU{(7,T);}) Ais any sentence node
A = (y(Az;.),AUT)

4 Dominance graphs: Semantics construction

S — NP VP: VP — TV NP: /\
VP NP vV NP

NP — Det N’: NP — PN: @ PN

N’ — N PP: N’ — N: ® N

PP — P NP:
P NP

5 Dominance graphs: Solving

The three rules of the dominance graph solver:

(a) Choice: If a node u has two dominance parents v and w, generate two new domi-
nance graphs containing the edges (v,w) and (w,v), and continue the search for
solved forms for both new graphs.

(b) Parent Normalisation: If (u,v) is a dominance edge, and v has a father w over a
tree edge, replace (u,v) by (u,w).

(¢) Redundancy Elimination: If e = (u,v) is an edge and there is a path from u to v
that doesn’t use e, delete e from the dominance graph.



6 DRT: Syntax and Semantics

A discourse representation structure (DRS) K is a pair (U, Ck) where

— Uk 1is a set of discourse referents

— (i is a set of conditions.

Conditions:
R(uy, ..., up) R is an n-place relation, u; € Uk
U= u,v € Uk
u=a u € Uk, a a proper name
K= Ky K and Ky DRSs
KV Ky K7 and K9 DRSs
—|K1 K1 is a DRS

7 DRT: Embedding, verifying embedding

Let Up be a set of discourse referents, K = (Ux,Ck) a DRS with Ux C Up, M =
(Unr, Var) a model structure of first-order predicate logic that is suitable for K. An
embedding of Up into M is a (partial) function that assigns individuals from Ujs to
discourse referents.

An embedding f verifies the DRS K in M (f = K) iff
(a) Ux € Dom(f) and

(b) f verifies each condition « € Ck.

f verifies a condition « in M (f s «) in the following cases:

fEM Ru,...,uy) it (f(u1),..., f(un)) € Vi (R)

Fau= i () = (o)

fEMu=a iff f(u) = Vim(a)

fEm K1 = Ky iff for all g Duy, f such that g = K,
there is h U, 9 such that h =y Ko

fEM K1 iff there is no g Dy, [ such that g Euv K

fEM KV Ky iff there is a g1 vy, f such that g1 =y K1,

or there is a g9 Uk, f such that gs Fpr Ko.

8 Presuppositions (van der Sandt)

A proto-DRS is a triple (Ux,Ck, Ak ), where

— Uk 1is a set of discourse referents
— (i is a set of conditions

— Ag is a set of “anaphoric” (alpha-) DRSs.



9 Resolution of a-DRSs

Let K and K’ be proto-DRSs such that K’ is a sub-DRS of K. Let v = az K, be an
alpha-free alpha-DRS in K’, and let K; be a sub-DRS of K that is accessible for ~.

(a) Accommodation: Remove 7 from K’, and extend K; with Uk, and Ck,.

(b) Binding: Let further y € Uk, be a discourse referent that is suitable for . Then
remove 7 from K’ and extend K; with Uk, and Ck, and the condition z = y.

10 DPL: Interpretation

Terms:

[z]M" = h(z)  if  is a variable
[a]*" = Vas(a) if a is a constant.

Formulas:
[Ritr, . )] = (g h) [ =g and ([]™0, . [t,]49) € Vig(R))
[t = t2]] = {{g;h) | h =g and [t.]"" = [to] ™"}
[-o] ™ = {{g,h) | h =g and ex. no k s.t. (g, k) € [¢]M}
Lo Ayl = {{g:h) | ex. k s.t. (g,k) € [¢]™ and (k,h) € [¢]"}
[[cp\/@b]]M = {{g,h) | h =g and ex. k s.t. (g,k) € [¢]™ or (g,k) € [¢]"}
[ — w]] = {(g,h) | h = g and for all k: if (g, k) € [¢]M, then ex. j s.t. (k,j) € [¥]"}
[Bz.o]™ = {{g,h) | ex. k[z]g s.t. (k,h) € [¢]™}
[Vz.o]M = {{(g,h) | h = g and for each k[z]g, there is an m s.t. (k,m) € [p]"}

11 DPL: Truth, equivalence, entailment

(a) Truth and validity:
— A formula ¢ is true in M with respect to an input assignment g iff there is a
hst. (g,h) € [¢]M.

— A formula ¢ is true in M iff ¢ is true in M with respect to every input
assignment.

— p is walid iff it is true in every model structure.
(b) Notions of equivalence:
— Satisfaction set: \¢\y = {g | exists h s.t. (g, h) € [¢]M}
— s-equivalence (static equivalence): ¢ <g 9 iff for all M, \p\y = \¢Y\m
— full equivalence (dynamic equivalence): ¢ < o iff for all M, [o]M = []M
(c) Notions of entailment:
— Static entailment: ¢ =g ¥ iff for all M, g: If ¢ is true wrt. M and g, then 9
is true wrt. M and g.
— Meaning inclusion: ¢ < 1 iff [p]™ C []M.
— Dynamic entailment: ¢ |= + iff for all M, g, h: if (g,h) € [¢]™, then there
exists k s.t. (h, k) € [¢]™.
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