Compact Course Python
 Exercise 3

1 Prime numbers

1.1 Prime numbers with for

In the first lecture, we introduced an algorithm that finds all primes in a certain range of numbers (e.g. from 2 to 100) using a while-loop.
Write a function that computes prime numbers using a for-loop. The function shall take the limits of the range as its parameters. The return value shall be a list containing all the prime numbers within that range.

```
>>> primes(2,50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
```


1.2 Prime numbers with list comprehension

Write a function that computes prime numbers between two given numbers using list comprehension. The return value should be defined using as few list comprehensions as possible.

2 Quicksort

A recursive sorting algorithm for lists is Quicksort:

- Chose a random element e out of the list (this is called a "pivot element")
- Create two lists: the first list shall contain every element which is smaller than e , the second lest shall contain every element that is greater or equal to e. ${ }^{1}$
- Sort the two lists (with the same procedure).
- Return a list which is the concatenation of the first list, e and, at last, the second list.

Implement a Quicksort function that takes a list of numbers as parameter and returns a sorted list. (Don't use Python's sorted function!)
>>> quicksort ([5, 1, 23, 934, 42, 3234, 432, 234, 561, 451, 4, 5, 1, 123, 54]) $[1,1,4,5,5,23,42,54,123,234,432,451,561,934,3234]$

[^0]
3 Fibonacci numbers

3.1 Computing them iteratively

On the slides of the second lecture, we show a recursive algorithm that computes the Fibonacci numbers. Implement a non-recursive function that computes the Fibonacci numbers using a loop.

```
>>> fibonacci_iter(5)
5
```


3.2 Memorization

Although it is easier to read, the recursive definition of the fibonacci numbers is slowed down by repeated calculation of the same values. A dictionary can be used to store and re-use known values. A useful approach can look as follows:

```
def fibonacci_cache(n, cache={}):
    if n in cache: return n
    else:
        # compute the value
        # store it in cache
        # return it
```

Implement the rest of this function and compare its performance against the recursive and the iterative definition.

4 Calendar

Implement two functions that provide a (very simplistic) organizer function. The first function addEvent (year, month, day, what, cal) shall add an event to this calendar. The parameters should be year, month, day (as numbers), and a String containig the event name.

The second function getEvents (year, month, day,cal) shall extract all appointments for the given date (format as above) and return it as a (readable) string.
Chose appropriate data structures for the calendar. A possible program run could look like this:

```
>>> cal = ... % an empty calendar, initialized with your structure
>>> addEvent(2009,11,12,"Python Course", cal)
>>> addEvent(2009,11,12, "CoLi Party", cal)
>>> addEvent(2009,11,13, "Hangover", cal)
>>> addEvent(2009,12,24, "Christmas",cal)
>>> print(getEvent(2009,11,12,cal))
['Python Course', 'CoLi Party']
```

Optional extra task (more tricky): Implement two additional methods getEventsForMonth(year, month, cal) and getEventsForYear (year, cal) that return all events for the given month or the given year resp.

```
>>> print(getEventsForMonth(2009,11,cal))
12.: ['Python Course', 'CoLi Party']
13.: ['Hangover']
>>> print(getEventsForYear(2009,cal))
12.11.: ['Python Course', 'CoLi Party']
13.11.: ['Hangover']
24.12.: ['Christmas']
```


5 Combining Weights

Assume you have a set of weights $w_{1} \ldots w_{n}$ and you would like to find a subset of them that gets as close as possible to a certain total weight. For n weights, there are 2^{n} possible subsets, and there is no known algorithm that would solve this problem efficiently.

Write a function findSums(weights, minSum, maxSum) that takes three arguments:
weights - a list of weights
minSum - a minimum total weight
maxSum - a maximum total weight
The function should return a list of all subsets of the weights for which the sum falls into the allowed range.
E.g. a call
»> findSums ([1, $2,4,8], 10,13)$
should return
$[[2,8],[1,2,8],[4,8],[1,4,8]]$
(or a permutation thereof)
Hint: Use list comprehensions to generate all subsets of the given weights. Use another list comprehension to extract only the good solutions from the solution candidates.

6 Generating Passwords

Passwords should be easy to remember but hard to guess. Write a function that generates all passwords of a given length where vowels alternate with consonants. Use list comprehensions for your implementation. Provide an optional argument for specifying a set of known words that are not allowed as result.

7 The Towers of Hanoi (Extra task)

The Towers of Hanoi are a famous example for problems that have elegant recursive solutions. The game setup containts three bars ($\mathrm{a}, \mathrm{b}, \mathrm{c}$ in the picture) and n discs ($\mathrm{n}=4$ in the picture). The goal is to bring the disc tower from bar a to another bar (e.g. c). You may move only one disc at a time, and a disc may only be put on a larger disc or on an empty bar.

Figure out and implement the algorithm that solves the Towers of Hanoi for n discs. One possibility to implement this is to print the moves in the correct order (something like Move disc x from a to c.)

[^0]: ${ }^{1} \mathrm{e}$ is in none of the two lists. The standard algorithm requires all elements that are equal to e to be distributed over both lists at random. We simplify this step here.

