dialogue systems, dialogue modeling
Dialog

linguistic properties (cohesive devices)
structure manifested in the dialog party’s contributions
speech-related phenomena:
 pauses and fillers („uh”, „um”, „..., like, you know,...”)
 prosody, articulation
 disfluencies
 overlapping speech
dialog specific phenomena:
 dialog acts/speech acts, dialog sequences, grounding

spontaneous vs. „practical” dialogs
 topic drifts vs. goal-orientatedness
Dialog

Both (narrative) monologue and dialogue involve interpreting:
- information status
- coherence/rhetorical relations
- contextual references
- intentions

dialogue additionally involves:
- turn-taking
- initiative and confirmation strategies
- grounding
- repairing misunderstandings
Dialog

dialog is made up of turns
speaker A says sth, then speaker B, then A...

how do speakers know when it’s time to contribute a turn?

there are points in dialog/utterance structure that allow for a speaker shift
→ Transition-Relevance Points (TRP)
e.g. intonational phrase boundaries
Dialog

dialog is made up of turns
 speaker A says sth, then speaker B, then A...

turn taking rules determine who is expected to speak next

at each TRP of each turn:
 if current speaker has selected A as next speaker, then A must speak next
 if current speaker does not select next speaker, any other speaker may take next turn
 if no one else takes next turn, the current speaker may take next turn
Dialog

some turns specifically select who the next speaker will be
→ adjacency pairs

regularly occurring, conventionalized sequences
conventions introduce obligations to respond (and preferred responses)

<table>
<thead>
<tr>
<th>greeting : greeting</th>
<th>question : answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>complement : downplayer</td>
<td>accusation : denial</td>
</tr>
<tr>
<td>offer : acceptance</td>
<td>request : grant</td>
</tr>
</tbody>
</table>

set up next speaker expectations (‘significant silence’ dispreferred)
Dialog

entering a conversation we (typically) have a certain intention

paradigmatic use of language: making statements...

...BUT there are also other things we can *do* with words

e.g. make requests, ask questions, give orders, make promises, give thanks, offer apologies

aspects of the speaker's intention:
the act of saying something,
what one does in saying it (requesting or promising)
how one is trying to affect the audience
Dialog: speech acts

certain *actions* we take in communication are designed to get our interlocutor(s) to do things on the basis of understanding of what we mean.

doing things with words: Austin, 1962, later Searle, Davis

→ **speech acts**

utterances are multi-dimentional *acts* that affect the context in which they are spoken.
Dialog: joint activity

when entering a conversation, we presuppose that there exists certain shared knowledge → **common ground**

introduced by Stalnaker (1978) based on older family of notions: *common knowledge* (Lewis, 1969), *mutual knowledge* or *belief* (Schiffrer, 1972)
Dialog: joint activity

when entering a conversation, we presuppose that there exists certain shared knowledge \(\rightarrow\) **common ground**

stock of knowledge taken for granted, i.e. assumed to be known both by the Speaker and the Hearer
sum of their mutual, common or joint knowledge, beliefs, and suppositions

sources of the assumptions:
evidence about social, cultural communities people belong to, academic backgrounds, etc. (**communal common ground**)
direct personal experiences (**personal common ground**)
Dialog: joint activity

when entering a conversation, we presuppose that there exists certain shared knowledge → common ground

What does it mean „You and I (mutually) know that ρ“?
Dialog: joint activity

when entering a conversation, we presuppose that there exists certain shared knowledge → **common ground**

What does it mean „You and I (mutually) know that p“?

I know that p
You know that p
Dialog: joint activity

when entering a conversation, we presuppose that there exists certain shared knowledge → common ground

What does it mean „You and I (mutually) know that p“?

I know that p
I know that you know that p
You know that p
You know that I know that p
Dialog: joint activity

when entering a conversation, we presuppose that there exists certain shared knowledge → common ground

What does it mean „You and I (mutually) know that p”?

I know that p
I know that you know that p
I know that you know that I know that p
...ad infinitum...

You know that p
You know that I know that p
You know that I know that you know that p
Dialog: joint activity

communication relies on collaboration

Gricean Cooperative Principle + principles of rational behaviour

cooperratively interpret and contribute
Dialog: joint activity

communication relies on collaboration

Gricean Cooperative Principle + principles of rational behaviour

coop eratively interpret and contribute

STILL discrepancies may exist between private vs. mutual beliefs

crucial: establishing shared knowledge (adding to common ground)

→ grounding
Dialog: grounding

levels of interpretation of performed communicative act:

channel: S executes, H attends
signal: S presents, H identifies
proposition: S signals that \(p \), H recognizes that \(p \)
intention: S proposes \(p \), H considers \(p \)
Dialog: grounding

levels of interpretation of performed communicative act:
channel: S executes, H attends
signal: S presents, H identifies
proposition: S signals that p, H recognizes that p
intention: S proposes p, H considers p

the Hearer must *ground* or *acknowledge* Speaker’s utterance
OR
signal, *at the level that satisfies the Speaker*, that there was a problem
in reaching common ground
Dialog: grounding

levels of interpretation of performed communicative act:
 channel: S executes, H attends
 signal: S presents, H identifies
 proposition: S signals that \(p \), H recognizes that \(p \)
 intention: S proposes \(p \), H considers \(p \)

the Hearer must ground or acknowledge Speaker’s utterance

OR

signal, at the level that satisfies the Speaker, that there was a problem
in reaching common ground

closure principle: agents performing an action require evidence, sufficient for current purposes, that they have succeeded in performing it (Clark96)
Dialog: grounding

levels of interpretation of performed communicative act:
 channel: S executes, H attends
 signal: S presents, H identifies
 proposition: S signals that \(p \), H recognizes that \(p \)
 intention: S proposes \(p \), H considers \(p \)

grounding feedback possible at all levels:
 continued attention
 relevant next contribution
 acknowledgement
 demonstration (e.g. paraphrase, completion)
 display (verbatim)
Dialog: grounding

levels of interpretation of performed communicative act:
 channel: S executes, H attends
 signal: S presents, H identifies
 proposition: S signals that \(p \), H recognizes that \(p \)
 intention: S proposes \(p \), H considers \(p \)

problems ...possible at all levels:
 lack of perception
 lack of understanding
 ambiguity
 misunderstanding
 \(\rightarrow \) clarification and repair strategies
Dialog: grounding

levels of interpretation of performed communicative act:

channel: S executes, H attends
signal: S presents, H identifies
proposition: S signals that p, H recognizes that p
intention: S proposes p, H considers p

S: I can upgrade you to an SUV at that rate.
H gazes appreciatively at S (continued attention)
H: Do you have a RAV4 available? (relevant next contribution)
H: ok / mhmmm / Great! (acknowledgement/backchannel)
H: An SUV. (demonstration/paraphrase)
H: You can upgrade me to an SUV at the same rate? (display/repetition)
H: I beg your pardon? (request for repair)
dialog systems

goal-oriented conversational systems

challenges:
 need to understand
 interpretation context-dependent
 intention recognition
 anaphora resolution
 people don’t talk in sentences...
 user’s self-revisions
dialog systems

goal-oriented conversational systems

how:

- interactions in a limited domain
- prime users to adopt vocabulary the system knows
- partition interaction into manageable stages
- let the system take the initiative (predictability)
dialog systems

eample tasks:
 retrieve information → information-seeking dialogue
 seek to satisfy constraints → negotiation dialogue
 perform action → command-control dialog
 collaborate on solving a problem → problem-solving dialog
 instruct → tutorial/instructional dialogue

applications:
 travel arrangements, telephone directory
 customer service, call routing
 tutoring
 communicating with robots
 voice-operated devices
dialog systems: travel arrangements (Communicator)

S1: Hello. You've reached the [Communicator]. Tell me your full name
U2: hi i'd like to fly to seattle tuesday morning
S3: Traveling to Seattle on Tuesday, August eleventh in the morning. Your full name?
U4: [John Doe]
S5: Hello, [John], I'm glad to hear from you again. You can now ask me for help.
S6: OK. Let's see I have a United flight departing Pittsburgh at ten forty five a.m.
 arriving into Seattle at one fifty seven p.m. Is that OK?
U7: Yes
S8: Will you return to Pittsburgh from Seattle?
U9: no i will go to Los Angeles
S10: Traveling to Los Angeles. on what date
U11: Sorry can we go back to talk about the previous leg again
S12: For the first leg, you are on a United flight 1446 departing Pittsburgh at ten forty five A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Do you want to take that?
U13: actually i want to leave on wednesday
S14: a flight on wednesday.
S15: I have a flight departing Pittsburgh at ten forty five a.m., arrives Seattle at one fifty seven p.m. Is that OK?
U16: Yes

Figure 19.1 The travel domain: a fragment from a successful conversation between a user (U) and the Communicator system (S) of Xu and Rudnick (2000).
dialog systems: call routing (ATT HMIHY)

<table>
<thead>
<tr>
<th>S:</th>
<th>How may I help you?</th>
</tr>
</thead>
<tbody>
<tr>
<td>U:</td>
<td>can you tell me how much it is to tokyo?</td>
</tr>
<tr>
<td>S:</td>
<td>You want to know the cost of a call?</td>
</tr>
<tr>
<td>U:</td>
<td>yes that's right</td>
</tr>
<tr>
<td>S:</td>
<td>Please hold on for rate information.</td>
</tr>
<tr>
<td>S:</td>
<td>How may I help you?</td>
</tr>
<tr>
<td>U:</td>
<td>what's the area code for chicago?</td>
</tr>
<tr>
<td>S:</td>
<td>You want an area code.</td>
</tr>
<tr>
<td>U:</td>
<td>(silence)</td>
</tr>
<tr>
<td>S:</td>
<td>The area code for Chicago is 312.</td>
</tr>
</tbody>
</table>

Figure 19.2 The call routing/telephone information domain: two actual conversations between a user (U) and the AT&T How May I Help You (HMIHY) system (S) (Gorin et al., 1997).
dialog systems: tutorial dialog (ITSPHONE)

S: I didn’t understand. What force acts on all objects within close proximity to earth?
U: *uh* the force of gravity
S: Fine. Besides the Earth’s gravitational force, are there any other forces acting on the person, keys, and elevator after the release?
U: no
S: Yep. Thus, keep in mind that after the release, the only force on the person, keys, and elevator is the force of gravity. If gravity is the only force acting on an object, will it be moving or staying still?
U: it will be moving
S: Fine. Not only are the person, keys, and elevator moving, they have only gravitational forces on them. When an object is falling and has only gravitational force on it, it is said to be in what?
U: freefall

Figure 19.3 The tutoring domain: part of an actual conversation between a student user (U) and the ITSPHONE system (S) of (Litman and Silliman, 2004), based on the Why2-Atlas text-based tutoring system (?).
dialog systems

modality: type of communication channel used to convey or acquire information

natural-language: spoken or textual keyboard-based or both
pointing devices
graphics, drawing
gesture
combination of one of more of above (multi-modal systems)
dialog systems

typical components:

ASR, NLU: tell system what was said
Dialog Manager: when to say, what to say
Task Manager: perform domain-relevant action
NLG: how to say
TTS: say
dialog systems

additional components:

speaker identification, verification; e.g. banking
 system knows the speaker...
 definitely: say „hi, Cindy“, go directly to appropriate account
 probably: say “is that Cindy?”
 possibly: say “have you used this service before?”
 otherwise: say “hi, what’s your name”

user model
modality handlers (input fission, output fusion)
...
dialog systems

System: Which date do you want to fly from Washington to Denver?

Bill: I need a flight from Washington DC to Denver roundtrip

Meaning

data, rules, domain reasoning

Spoken Language Understanding

getDepartureDate

Action

Dialog Management

Response Generation

Automatic Speech Recognition

Speech

Bill: I need a flight from Washington DC to Denver roundtrip

ORIGIN_CITY: WASHINGTON
DESTINATION_CITY: DENVER
FLIGHT_TYPE: ROUNDTRIP
dialog systems

hello Bill, how may I help you today?

speech technology: recognition, synthesis

NLP: grammars, parsers, generation, discourse, pragmatics

human factors: design, performance, usability

AI: reasoning, communication, planning, learning
dialog systems: speech recognition

ASR: speech to words/meanings

language model + recognition grammar („semantic grammar“)

understanding user crucial → grammars typically hand-written context-free rather than statistical

REQUEST : tell me | I want | I’d like | ...
DEPARTURE_TIME : (after|around|before) HOUR | morning | evening
HOUR : one|two|three| ... |twelve (am|pm)
FLIGHTS : (a) DEPARTURE_TIME flight | DEPARTURE_TIME flights
ORIGIN : from CITY
DESTINATION : to CITY
CITY : London | Warsaw | New York | ...
dialog systems: generation and speech synthesis

NLG: based on content (meaning) to be expressed:
- plans sentences
- chooses how to express concepts with words; syntactic structures and lexemes → surface realization
 - simplest method: „canned” utterances (with variable slots)
 - → „template-based” generation
- if possible, assigns prosody (according to context)

Text-to-Speech component
- takes NLG output
- synthesizes a waveform
dialog systems: dialog management

dialog engine’s tasks:

when to say? → control the flow of dialog
what to say? → dialog modeling

takes input from ASR/NLU
maintains some sort of „dialog state”
communicates with Task Manager
passes output to NLG/TTS
dialog systems: dialog management

control the flow of dialog

when to say something and when to listen (turn-taking), when to stop

update dialog context with current user’s input and output the next action in the
dialog
deal with barge-in, hang-ups

dialog modeling

what is the context

what to say next

goal: achieve an *application goal* in an *efficient* way through a series of interaction with the user
dialog systems: turn-taking strategies

rigid turn taking
system speaks till it completes turn, stops, and only then listens to user
system waits till user stops speaking and responds again
problems: users must wait for system to finish turn
users often speak too early,
make too long pause while speaking (interpreted as end of turn)

flexible turn taking
user barge-in; as in natural conversation → more efficient
problems: backchannel or noise misinterpreted as user turn
system interprets own output as input
dialog systems: initiative strategies

- directive prompt
 - explicit instruction on what information user should supply at given point
- open prompt
 - no/few constraints on what user can say

restrictive grammar
- constrains the ASR/NLU system based on dialogue state

non-restrictive grammar
- open language model, not restricted to a particular dialogue state

<table>
<thead>
<tr>
<th>grammar</th>
<th>open</th>
<th>directive</th>
</tr>
</thead>
<tbody>
<tr>
<td>restrictive</td>
<td>—</td>
<td>system initiative</td>
</tr>
<tr>
<td>non-restrictive</td>
<td>user initiative</td>
<td>mixed initiative</td>
</tr>
</tbody>
</table>
dialog systems: initiative strategies

system initiative

S: Please give me your arrival city name.
U: Baltimore.
S: Please give me your departure city name....

user initiative

S: How may I help you?
U: I want to go from Boston to Baltimore on November 8.

mixed initiative

S: How may I help you?
U: I want to go to Boston.
S: What day do you want to go to Boston?
dialog systems: dialog models

why need dialog models?

system and user work on a task
dialog structure reflects the task structure

BUT:
dialog need not follow the task-steps
need for grounding
dialog systems:* dialog models

examples of dialog models

- FSA
- frame-based
- Information State (aka ISU)

the choice depends on the complexity and nature of the task
dialog systems: dialog models

FSA-based dialog models

dialog modelled as a directed graph: set of states + transitions

system utterance determined by state

(interpretation of) user utterance determines next state (deterministic transition)
dialog systems: dialog models

FSA-based dialog models

start 01 getName
02 getTransactionType
03 if type == balance goto 10
03 if type == deposit goto 20
...
50 ask(“another transaction?”)
if “yes” goto 02
else stop
dialog systems: dialog models

FSA-based dialog models
dialog systems: dialog models

FSA-based dialog models
dialog systems: dialog models

FSA-based dialog models
dialog systems: dialog models

FSA-based dialog models

fixed dialog script, system driven interaction

pros:
- fixed prompts (can pre-record)
- ARS and interpretation can be tuned for each state

cons:
- rigid dialogue flow
- user initiative?
 - in principle, more flexibility possible, but graphs grow complex quickly

suitable for simple fixed tasks
dialog systems: dialog models

frame-based dialog models

sets of precompiled templates for each data item needed in the dialog

system’s agenda → fill the slots in the template

system maintains initiative → directed-questions (prompts)

slots need not be filled in a particular sequence → over-answering, actions triggered on other slots
dialog systems: dialog models
frame-based dialog models

[SHOW:
 FLIGHTS:
 (getOrigin CITY)
 (getDate DATE) (getTime TIME)
 DEST:
 (getDestination CITY)]

U1: Show me flights to SF.
U2: Show me morning flights from Boston to SF on Tuesday.
dialog systems: dialog models

frame-based dialog models

pros:
- enables some user initiative
- more flexible than FSA

cons:
- user input less restricted → ASR more difficult
- not every task can be modeled by frames

- not suited to dynamic complex dialogs
- doesn't handle multiple topics/conversation threads
dialog systems: dialog models

Information State-based models

Information State (IS) is a representation of current dialog state

dialog contributions viewed as dialog moves (DMs)
dialog move types similar to speech acts, e.g. command, wh-question, revision, etc.

IS is used to:

interpret user’s utterances → *update* the dialog state
decide which external actions to take
decide when to say what
store information (dialogue context representation)
dialog systems: dialog models

Information State-based models

pros: allows for contextual interpretation
rich representation (includes dialog context, obligations, etc.)
dialog is not scripted
dialog history stored → multi-threaded conversations
allows for mixed-initiative

cons: complex apparatus

both FSA and frame-based models can be represented as ISU-models
dialog systems: grounding

ASR and input interpretation are error prone

grounding helps to make sure system interpreted correctly

users of speech-based interfaces are confused when system doesn’t give them an explicit

acknowledgement signal (Stifelman et al.93, Yankelovich et al.95)

→ in fact, *crucial* in design of dialog systems

grounding strategies

pessimistic: immediate explicit verification (awfully inefficient)

optimistic: delayed accumulated verification (errors accumulate, recovery difficult)

carefully optimistic: implicit verification → incorporate data to be verified in next system turn

choosing strategy: ASR confidence (e.g. combined with system’s belief about task state)
dialog systems: grounding

grounding example:

carefully optimistic strategy: acknowledgement + relevant next contribution

U: I need to travel in May.
S1: What day in May did you want to travel?
S2: And you’re flying into what city?
S3: And what time would you like to leave?
dialog systems: grounding

(some) considerations:

if system rejects user’s utterance or displays misundersanding/non-understanding, then user will probably make a correction:
 reply „no” to confirmation question, repeat, rephrase, etc.

BUT corrections are typically **harder** to recognize than normal sentences (misrecognized twice as often as non-corrections...)
 why? hyperarticulation, users tend to speak lauder, user’s rephrasing may aggravate because out-of-grammar

→ need efficient error recovery strategies
 e.g. dynamicaly change prompt strategy, switch to restrictive grammar

 if dialog does nowhere, should the system be allowed to hang-up on a user?...
dialog systems: grounding, clarification

A: Welcome to Busman, the Tampere bus information service! How may I help you?
U: When does the next bus leave from Central Square to Her ehhh correction from Central Square to Hervanta?
A: Sorry, I didn't recognize that. Please speak clearly.
U: What now?
A: Busman understands questions such as "When does the next bus to Hervanta depart?", ... [help continues]
U: I'm leaving from Central Square, and I'm going to Hervanta.
A: Sorry, I still didn't recognize that.
A: Please tell me where you are leaving from.
U: From Central Square.
A: What is your destination?
U: Hervanta.
A: From Central Square to Hervanta use lines 13, 20, 23 and 30.
A: Do you want to hear timetables?
U: Yes.
A: From Central Square to Hervanta on weekdays at 11:15 bus in line 23...
dialog systems: actually...

many practical implemented systems:

simple dialog model (e.g. frame)

system initiative + universals

„universals”: commands you can say anywhere
e.g. in FSA, at every state user can say things like „help”, „start over”, „correct”