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Basics - The Idea of Clustering

I clustering is generalizing over a similarity measure.

I elements have a similarity

I between one another
I between itself and not-elemental objects like for example the

hypothetical average element (centroid).

We are looking for a partition that best groups similar elements and
separates di�erent elements.

I maximize intra-cluster similarity

I minimize inter-cluster similarity



Basics - Measuring Clustering Performance

I intra-cluster similartiy:

I use an element × element matrix for the new cluster
I enter the similarity for each 〈element, element〉 pair
I sum over all values in the matrix, devide it by the number of

edges and get the overall similarity:

I inter-cluster similarity:

I generate a hypothetical average element (centroid) for each
new cluster

I measure similarity between the new clusters' representatives
I use the similarity between the most similar (single-link

similarity function) 〈c1, c2〉 pair
I use the similarity between the most dissimilar (complete-link

similarity function) 〈c1, c2〉 pair



Basics - Measuring Clustering Performance

Instead of thinking of the inter-cluster similarity:

I measure overall similarity in the set of all new clusters

I clusters should have high similarity in comparison to the
overall similarity

I maximize p3 = sim(A)+sim(B)
sim(A∪B)

I but this is best when each element has its own cluster!
see ending conditions

Unless we are already on the bottom level, there is always a
partition that satis�es the monotonicity criterion, that is p ≥ 1.
Another way of describing the goal of clustering is to maximize the
mutual information.



Basics - Similarity / Distance

I several standart similarity or distance measures

I euclidean distance in vector space
I jaccard coe�cient for sets
I . . .

I applied on AVM's representing the elements to be clustered

I decide which features to use as attributes and how to derive
values for them!

I possible to learn this from a training set of already clustered
elements

〈 attribute1 v1
attribute2 v2

...
...

attributen vn

〉

Figure: An attribute value matrix (AVM)



Basics - Similarity / Distance

I relation between similarity and di�erence is opposed

I we can turn any similarity measure into a distance measure:
1

1+sim
and the other way round: 1

1+dist

I as similarity increases, distance decreases; as distance
increases, similarity decreases

I similarity between two identical elements is maximal and 1.
The minimum similarity is 0.



Basics - Soft- vs. Hard Clustering

I in soft clustering, an element can belong to more than one
cluster

I it is even possible to assign a degree of belonging to each
〈element, cluster〉 pair

I this is not allowed in hard clustering

〈 e1 . . . en
c1 0.2 . . . 0.08
...

...
. . .

...
cn 0.01 . . . 0.3

〉
,

〈 e1 e2 . . . en
c1 1 0 . . . 1
...

...
...

. . .
...

cn 0 1 . . . 1

〉
,

〈 e1 e2 . . . en
c1 1 0 . . . 1
...

...
...

. . .
...

cn 0 1 . . . 0

〉
⇒ f = {〈e1, c1〉, 〈e2, cn〉, 〈en, c1〉}



Basics - Coherence and the MST

I project a Minimal Spanning Tree (MST) on set to be clustered

I MST combines all nodes with smallest possible overall edge
length

The coherence of a cluster re�ects the case that the most distinct
element in the cluster would be a separate cluster and the
inter-cluster similarity of the two clusters would be computed.



Basics - Coherence and the MST

I single-link measure: coherence of a cluster is the smallest
similarity between two nodes in the MST

I complete-link: coherence is the smallest similarity of all
〈element, element〉 pairs in the cluster

I group-average measure: coherence is the average similarity of
all the pair-similarities



Basics - Coherence and the MST

Figure: A minimum spanning tree (MST)



Basics - Ending Conditions

I hierarchical clustering needs no ending condition

I for �at clustering we need to determine a maximum number of
clusters

I else it will split into separate clusters for each single element

I another possibility is to use Minimal Description Length (MST)



Basics - Reallocations

I some clustering algorithms perform reallocations during
runtime

I a cluster is not clearly assigned to one cluster after some
iteration

I it might be reassigned to another cluster lateron



Basics - Medoid / Centroid

I the centroid in vector space is a imaginary element that is not
in the set of elements

I it is projected into the vector space by taking the average of
all values for all attributest

I the medoid is the element in the set that is closest to the
centroid

I some algorithms use the medoid instead of the centroid as the
center of a cluster
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Basics - Clustering vs. Classi�cation

I clustering uses a similarity measure to compare elements with
elements

I derives a structural ordering by itself (unsupervised learning)

I classi�cation uses a similarity measure to compare elements
with already existing patterns

I patterns are de�ned in advance for speci�c groups (supervised
learning)



Hierarchical Clustering

We can think of the hierarchical clustering process in two ways:

1. iteratively separating clusters top-down starting with an initial
Hyper-Cluster (Divisive Clustering)

2. iteratively grouping bottom-up from initial 1-elemental clusters
(Agglomerative Clustering).



Hierarchical Clustering

Figure: A hierarchical clustering



Hierarchical Clustering - Top Down

I a cluster is iteratively devided into sub-clusters

I similarity between the evolving clusters is minimized

I similarity between the elements within each of the clusters is
maximized

I best partition is the one with the best inter-intra-similarity
ratio

I maximize p1 = intra−sim
inter−sim or minimize p2 = inter−sim

intra−sim , with
p1, p2 partition quality measures



Hierarchical Clustering - Top Down

Figure: p3 = sim(A)+sim(B)
sim(A∪B)



Hierarchical Clustering - Bottom Up

I in Agglomerative Clustering we start with seed clusters

I in each agglomeration step we add one external element or
cluster to each cluster

I maximize similarity between each of the combined pairs

I if a cluster c is to be merged with another cluster:

I choose the cluster that will lead to the greatest intra-cluster
similarity after merging

I of all the possible 〈c, c ′〉 pairs, we are looking for the one that
maximizes sim(c ∪ c ′)



Flat Clustering

I a Flat Clustering does not result in a hierarchy

I most popular algorithms for �at clustering are:

I k-means

depends heavily on the notion of the centroid or medoid
I Expectation Maximization (EM)

uses statistics (!) to calculate the cluster model that
maximizes the likelihood of the data



Flat Clustering - K-means

I start with k seed �clusterpoints�

I can be set randomly or automatically or manually

I results will vary depending on where the initial �clusterpoints�
were placed

I repeat until an ending condition is reached:

1. Assign each element to the closest clusterpoint
2. Move the clusterpoint into the actual center of the cluster



Flat Clustering - K-means

Figure: An illustration of the k-means algorithm
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