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1 Basics

1.1 The Idea of Clustering

• Clustering is generalizing over a similarity measure.

• Elements have a similarity between one another and between itself and
not-elemental objects like for example the hypothetical average element
(centroid in a vector space respresentation).

• The goal of clustering is to maximize intra-cluster similarity and minimize
inter-cluster similarity, that is we are looking for a partition that best
groups similar elements and separates di�erent elements.

1.2 The Goal of Clustering

The best partition of the set to be clustered is the one with the best inter-intra-
similarity ratio: we maximize p1 = intra−sim

inter−sim or minimize p2 = inter−sim
intra−sim , where

p1, p2 are partition quality measures.

1.2.1 Overall Intra-Cluster Similarity

But how do we measure inter- and intra-similarity? Getting the intra-cluster
similartiy is rather easy. If we use an element × element matrix for the new
cluster and enter the similarity for each 〈element, element〉 pair, we can sum
over all values in the matrix, devide it by the number of edges and get the
overall similarity:

in t ra s im := 0 ;
numberofedges := 0 ;
f o r each element e1 :

f o r each element e2 :
i f e1 != e2 :

in t ra s im += sim ( e1 , e2 ) ;
numberofedges++;

end i f
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endfor
endfor
re turn in t ra s im /numberofedges ;

1.2.2 Overall Inter-Cluster Similarity

Measuring inter-cluster similarity is more complicated. We can for example
generate a hypothetical average element (centroid / medoid) representing each
new cluster and measure the similarity between the new clusters' representatives.
We can also use the similarity between the most similar (single-link similarity
function) or dissimilar (complete-link similarity function) 〈c1, c2〉 pair, where
c1 is from one cluster C1 and c2 from the other (C2). Instead of thinking of
the inter-cluster similarity we can also measure the overall similarity in the
set of all new clusters. We want to get clusters that have a high similarity
in comparison to the overall similarity in the preceding separation step: we
maximize p3 = sim(A)+sim(B)

sim(A∪B) . This is of course best when each element has its
own cluster. Therefore we need to either set a constant for the number of clusters
generated in each separation step or introduce a cost-factor that increases with
the number of clusters (see Minimal Description Length).

Another way of describing the goal of clustering is to maximize the mutual
information.

1.3 Similarity vs. Di�erence

There are several standart similarity or distance measures like for example the
euclidean distance in a vector space representation or the jaccard coe�cient

(and many others). In principle they are applied on AVM's representing the
elements to be clustered. The crucial part when it comes to applying clustering
to a speci�c set of entities is thus to decide on which features to use as attributes
and how to derive a value for this attribute from the entity. It is possible to
learn this from a training set of already clustered elements (requires a lot of
manual work).

The relation between similarity and di�erence is of course opposed. We can
turn any similarity measure in a distance measure: 1

1+sim and the other way
round: 1

1+dist . As similarity increases, distance decreases. As distance increases,
similarity decreases. We say that the similarity between two identical elements
is maximal and 1. The minimum similarity is 0.

1.4 Soft- vs. Hard Clustering

In soft clustering, an element can belong to more than one cluster. It is even
possible to assign a degree of belonging to each 〈element, cluster〉 pair. None
of this is allowed in hard clustering. So we get that in soft clustering we have a
element× cluster matrix that is �lled with the respective value for the degree
of belonging. In soft clustering without degrees we can use the same matrix
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Figure 1: A minimum spanning tree (MST )

only assigning 0 and 1's and in hard clustering we allow only 0 and 1's and in
addition only one 1 per element. In the latter case it is more compact to think
of a element× cluster function.

1.5 Coherence and the Minimal Spanning Tree

On each set to be clustered can be projected a Minimal Spanning Tree (MST )
that treats all elements in the set as nodes and has the smallest overall edge
length of all possible trees combining these nodes. Using the single-link measure
(see below) we can de�ne the coherence of a cluster as the smallest similarity
between two nodes in the MST. Using the complete-link or group-average mea-
sure, we cannot use the MST. In the �rst case we take the smallest similarity
of all 〈element, element〉 pairs in the cluster as the coherence and in the latter
we use the average similarity of all the pait-similarities. The coherence of a
cluster re�ects the case that the most distinct element in the cluster would be
a separate cluster and the inter-cluster similarity of the two clusters would be
computed.

1.6 Ending Conditions of Clustering Algorithms

Hierarchical Clustering needs no ending condition since it terminates automat-
ically. However, for �at clustering we need to determine a maximum number of
clusters to keep it from splitting into separate clusters for each single element.
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Another possibility is to use Minimal Description Length (MST ) or terminate
when the clustering does not change anymore or the overall clustering quality
begins to decrease.

1.7 Reallocations

Some clustering algorithms perform reallocations during runtime. That means
that a cluster is not clearly assigned to one cluster after some iteration because
it might be reassigned to another cluster lateron.

1.8 Medoid vs. Centroid

The notion of the centroid in vector space is a imaginary element that is not in
the set of elements to be clusters but projected into the vector space by taking
the average of all values for all attributes. The medoid is the element in the set
that is closest to the centroid. Some algorithms use the medoid instead of the
centroid as the center of a cluster.

1.9 Clustering vs. Classi�cation

While clustering uses a similarity measure to compare elements with elements
and derive a structural ordering by itself (unsupervised learning), classi�cation
uses a similarity measure to compare elements with already existing patterns
de�ned in advance for speci�c groups (supervised learning).

2 Hierarchical Clustering

We can think of the hierarchical clustering process in two ways: iteratively sep-
arating clusters top-down starting with an initial Über-Cluster (Divisive Clus-

tering) or iteratively grouping bottom-up from initial 1-elemental clusters (Ag-
glomerative Clustering).

2.1 Top-down Hierarchical Clustering

A cluster is devided into sub-clusters such that the similarity between the evolv-
ing clusters is minimized and the similarity between the elements within each of
the clusters is maximized. One can think of a binary tree as the simplest form
of an hierarchical clustering result. In each separation step the current cluster is
devided into exactly 2 new subclusters. Note that if we cannot �nd an optimal
partition, we must at least make sure that the partition does not reduce the
partition quality (Monotonicity) because otherways the hierarchy is invalid. We
know that unless we are already on the bottom level, there is always a partition
that satis�es the monotonicity criterion, that is p ≥ 1.
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2.2 Bottom-up Hierarchical Clustering

In Agglomerative Clustering we start with seed clusters. We can use all elements
as seeds or have an initial in�uence on the process by selecting especially distinct
seed clusters. In each agglomeration step we add one external element or cluster
to each cluster such that the similarity between each of the combined pairs is
maximal. Obviously, an element can only be paired with one cluster and a 1-
elemental cluster that is paired with another cluster will not pair with another
element or cluster anymore. We say two clusters were merged. If a cluster c
is to be merged with another complex cluster (and not just an element or a
1-elemental cluster) we have to choose the cluster that will lead to the greatest
intra-cluster similarity after merging. So of all the possible 〈c, c′〉 pairs, we are
looking for the one that maximizes sim(c ∪ c′). In this case it might also make
sense to use a notion of weight for clusters such that heavy clusters (with many
elements) can incorporate lighter surrounding clusters. On might imagine a
�universe� of clusters with clusters having their own gravity.

3 Flat Clustering

A Flat Clustering does not result in a hierarchy. So the set of elements to be
clustered is just devided in a number of clusters on top level. The most popular
algorithms for �at clustering are k-means and Expectation Maximization (EM ).
K-means depends heavily on the notion of the centroid or medoid while the
EM algorithm uses statistics to calculate the cluster model that maximizes the
likelihood of the data given the model.

3.1 K-Means

Using k-means cluster we start with k seed �clusterpoints� that can be set ran-
domly or automatically or manualy. The results will vary depending on where
the initial �clusterpoints� were placed (note that in the following for clarity we
distinguish between a cluster as a set of elements and a �clusterpoint� that is
treated as the center of the cluster). After that the following steps are repeated
until an ending condition is reached:

1. Assign each element to the closest clusterpoint

2. Move the clusterpoint into the actual center of the cluster

3.2 EM-Algorithm
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Figure 2: An illustration of the k-means algorithm

6


