Lexical Acquisition in Statistical NLP

Adapted from: Manning and Schütze, 1999 Chapter 8 (pp. 265-278; 308-312)

Anjana Vakil University of Saarland

Outline

- What is lexical information?
- Why is it important for NLP?
- How can we evaluate the performance of NLP systems?
- Example: Verb Subcategorization

What is lexical information?

What is the lexicon?

That part of the grammar of a language which includes the *lexical entries* for all the words and/or morphemes in the language and which may also include various other information, depending on the particular theory of grammar.

(Trask 1993:159)

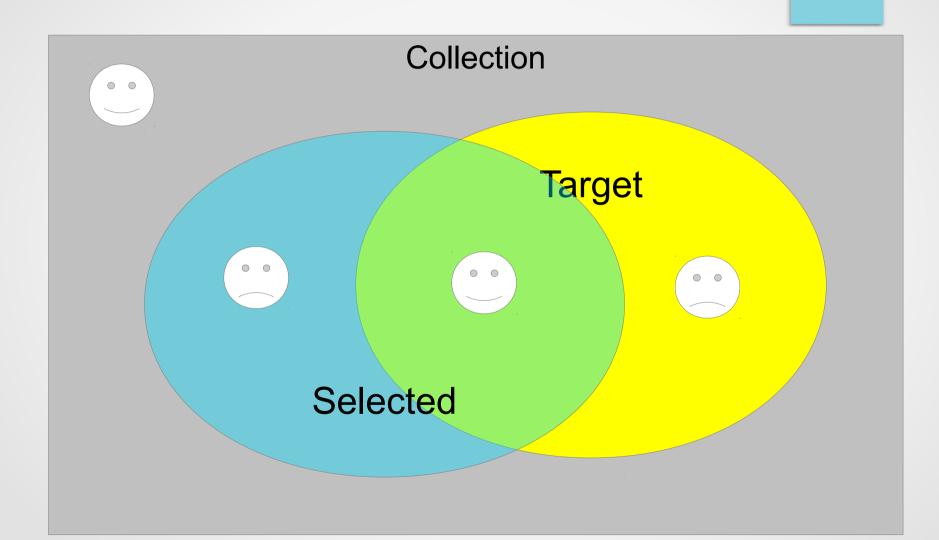
Imagine a big, detailed (machine-readable) dictionary What/how much information? \rightarrow Varies by theory

Why is it important for NLP?

Many NLP problems can be resolved by looking at lexical information, such as:

- Verb subcategorization
- Attachment ambiguity
- Selectional preferences
- Semantic similarity between words

Why is it important for NLP?


Couldn't we just write a lexicon with the relevant info?

- Building dictionaries by hand is expensive!
- Quantitative information is missing
- Contextual information is missing
- Language is always changing
 - New ideas \rightarrow new words
 - Old words take on new meanings, usage patterns

Most important: do the desired task well!

- Break it down: evaluate (& adjust) system components
- Hopefully, better component performance \rightarrow better overall performance on the task

Need a convention for evaluating certain components: precision vs. recall

selected, target = tp = true positives

selected, \sim target = fp = false positives (Type II errors)

~selected, target = fn = false negatives (Type I errors)

~selected, ~target = *tn* = true negatives

One approach:

Just compare the number of things we got right: tp + tn (accuracy) to the number of things we got wrong: fp + fn (error)

 \rightarrow What's the problem?

Precision vs. Recall

Better questions to ask:

How many of the things we found were correct? **precision** = tp/(tp + fp) = tp/|selected|

How many of the things we were supposed to find did we actually find?

recall = tp/(tp + fn) = tp/|target|

Precision vs. Recall

Q: What could we do to get 100% recall?

A: Select everything!

Q: What would happen to precision in this case?

A: Approaches zero

Q: Which is more important, precision or recall?

A: It depends!

The F measure

Combines precision & recall performance into one score

$$=\frac{1}{\alpha \frac{1}{P} + (1-\alpha) \frac{1}{R}}$$

• α determines weighting of precision vs. recall

F

α:	< 0.5	= 0.5	> 0.5
Preference:	recall	equal	precision

• With equal weighting ($\alpha = 0.5$), $F = \frac{2PR}{P+R}$

Exercise: Rhymes for "go"

grew	know
though	to
COW	apple
no	show
sew	tomato
slow	how
few	enough
blow	two
goo	orange
follow	crow
	though cow no sew slow few blow goo

- What is the target set?
- What feature(s) should we look for?
- Select: -o and -ow words
 Calculate:
 - Precision
 - Recall
 - F (even P/R weights)

lemon apple banana Collection orange grew few enough through

> do to how two now goo cow

 know glow throw no show flow tomato slow so blow
 Selected follow

though sew thorough

Verb Subcategorization

Verb categories: based on semantic arguments taken

l gave	<i>him</i> RECIPIENT	<i>a present.</i> THEME	l ate	<i>a hamburger.</i> THEME	
*I gave	<i>him.</i> RECIPIENT		*l ate	<i>him</i> RECIPIENT	<i>a hamburger.</i> THEME

Verb Subcategorization

 Categories can be divided into subcategories based on how arguments are represented syntactically

I gave [_{NP} him] [_{NP} a present].

I gave [_{NP} *a present*] [_{PP} *to him*].

* I gave [pp to him] [NP a present].

• We call the structures a verb allows its subcategorization frames

give subcategorizes for "NP NP" and "NP PP", not "PP NP" (NB: subject NP left out – all English verbs require this)

Verb Subcategorization

 Why might subcategorization information be helpful? Parsing:

> I told her where the CoLi students eat. She found the table where the CoLi students eat.

How could we acquire this information automatically?

Brent, Michael R. 1993. "From grammar to lexicon: Unsupervised learning of lexical syntax." *Computational Linguistics* 19:243-262

- *Lerner* system
 - Determine "cues" for certain subcat frames
 - Find verbs in corpus sentences
 - See if the word(s) following the verb fit the cue(s) for a certain frame
 - Use this to decide how likely it is that the verb allows that frame

Table 2 Lexical categories used in the definitions of the cues.

SUBJ: OBJ:	I he she we they me him us them
SUBJ_OBJ:	you it yours hers ours theirs
DET:	a an the her his its my
	our their your this that whose
+TNS:	has have had am is
	are was were do
	does did can could may might must will would
CC:	when before after as while if
PUNC:	. ? ! , ; :

Reproduced from (Brent 1993)

Table 1

The six syntactic frames studied in this paper.

SF Description	Good Example	Bad Example
NP only	greet them	*arrive them
tensed clause	hope he'll attend	*want he'll attend
infinitive	hope to attend	*greet to attend
NP & clause	tell him he's a fool	*yell him he's a fool
NP & infinitive	want him to attend	*hope him to attend
NP & NP	tell him the story	*shout him the story

Table 3

Cues for syntactic frames. The category V is initially empty and is filled out during the first pass. "cap" stands for any capitalized word and "cap+" stands for any sequence of capitalized words.

Frame	Symbol	Cues
NP only	NP	(OBJ SUBJ_OBJ cap) (PUNC CC)
Tensed Clause	cl	<pre>(that (DET SUBJ SUBJ_OBJ cap+)) SUBJ (SUBJ_OBJ +TNS)</pre>
Infinitive VP	inf	to V
NP & clause	MPc1	(OBJ SUBJ_OBJ cap+) cl
NP & infinitive	NPinf	(OBJ SUBJ_OBJ cap+) inf
NP & NP (dat.)	NPNP	(OBJ SUBJ_OBJ cap+) NP

Reproduced from (Brent 1993)

Analyze a corpus

- v^i = verb you're interested in
- f^{j} = frame you're investigating
- c^{j} = cue you've defined for that frame
- ϵ_i = probability of error for c^j

 $n = C(v^i) = \text{occurrences of verb in corpus}$ $m = C(v^i, c^j) = \text{co-occurrences of verb & cue}$

Hypothesis testing

- H_0 = The verb *does not* permit the frame
- H_1 = The verb *does* permit the frame

Assume H_0 , and calculate the probability of obtaining your data if H_0 is true

$$p_{E} = P((v^{i}(f^{j})=0)|(C(v^{i},c^{j})) \ge m) = \sum_{r=m}^{n} {n \choose r} \epsilon_{j}^{r} (1-\epsilon_{j})^{n-r}$$

If p_E is small enough (compared to α), we can reject H₀

Exercise: Manning's implementation

Verb	Correct	Incorrect	OALD
bridge	1	1	1
burden	2		2
depict	2		3
emanate	1		1
leak	1		5
occupy	1		3
remark	1	1	4
retire	2	1	5
shed	1		2
troop	0		3

Table 8.3 Some subcategorization frames learned by Manning's system. For each verb, the table shows the number of correct and incorrect subcategorization frames that were learned and the number of frames listed in the Oxford Advanced Learner's Dictionary (Hornby 1974). Adapted from (Manning 1993).

Reproduced from (Manning and Schütze 1999, p. 274)

- Calculate precision
- Calculate recall
- What do these numbers imply about the system?
- How could we do better?