Statistics in experimental research Session 2

Francesca Delogu delogu@coli.uni-saarland.de

Overview today

Hypothesis testing: two samples

Related and unrelated t test

Different data type

- Categorical variables
- Chi Square test

Exercise

Back to the example

Suppose we want to test whether coffee has an influence on time to finish homework, but this time we don't know the mean and standard deviation of the population without coffee

How would you test this hypothesis?

Two independent samples

	coffee	no coffee
Anne	35	
Jim	25	
John	28	
Mary	25	
Peter	19	
Carl	31	
Judy	18	
Bob	30	
Liz	26	
Betty	23	
Sandra		30
Tom		23
Frank		35
Kate		32
Mark		26
Carol		33
Tedd		39
Susan		22
Helen		32
David		28

$$\overline{X}_1 = 26$$
 $S_1 = 5.27$
 $\overline{X}_2 = 30$ $S_2 = 5.34$

$$\overline{X}_1 - \overline{X}_2 = 4 \min$$

What are your statistical hypotheses?

4

Statistical hypotheses

$$H_0: \mu_{\overline{X}_1} = \mu_{\overline{X}_2} \Longrightarrow \mu_{\overline{X}_1} - \mu_{\overline{X}_2} = 0$$
$$H_1: \mu_{\overline{X}_1} \neq \mu_{\overline{X}_2} \Longrightarrow \mu_{\overline{X}_1} - \mu_{\overline{X}_2} \neq 0$$

• Assuming that H_0 is true

what is the probability of observing a difference between sample means at least as extreme as the one we have obtained (4min)?

- If this probability is $< \alpha$, we'll rejectH₀
- NB: now you are working with scores representing differences between means, so you are interested in the sampling distribution of differences between the means

The sampling distribution of the difference between means

Sampling distribution of the difference

What is the mean of this sampling distribution if H_0 is true?

6

Two independent samples: t-test

	coffee	no coffee
Anne	35	
Jim	25	
John	28	
Mary	25	
Peter	19	
Carl	31	
Judy	18	
Bob	30	
Liz	26	
Betty	23	
Sandra		30
Tom		23
Frank		35
Kate		32
Mark		26
Carol		33
Tedd		39
Susan		22
Helen		32
David		28

$H_0: \mu_{\overline{X}_1 - \overline{X}_2} = 0$	$\overline{X}_1 = 26$	$S_1 = 5.27$
$H_1: \mu_{\overline{X}_1 - \overline{X}_2} \neq 0$	$\overline{X}_2 = 30$	$S_2 = 5.34$

$$\alpha = .05$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} df = n_1 + n_2 - 2$$

$$t = -1.68$$

7

TABLE B.2 THE t DISTRIBUTION

Table entries are values of *t* corresponding to proportions in one tail or in two tails combined.

	0.25	0.10	PROPORTION IN	ONE TAIL	0.01	0.005
	0.25	0.10	0.05	0.025	0.01	0.005
		PRO	PORTION IN TWO T	AILS COMBINED		
df	0.50	0.20	0.10	0.05	0.02	0.01
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.92
3	0.765	1.638	2.353	3.182	4.541	5.84
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.03
6	0.718	1.440	1.943	2.447	3.143	3.70
7	0.711	1.415	1.895	2.365	2.998	3.49
8	0.706	1.397	1.860	2.306	2.896	3.35
9	0.703	1.383	1.833	2.262	2.821	3.25
10	0.700	1.372	1.812	2.228	2.764	3.16
11	0.697	1.363	1.796	2.201	2.718	3.10
12	0.695	1.356	1.782	2.179	2.681	3.05
13	0.694	1.350	1.771	2.160	2.650	3.01
14	0.692	1.345	1.761	2.145	2.624	2.97
15	0.691	1.341	1.753	2.131	2.602	2.94
16	0.690	1.337	1.746	2.120	2.583	2.92
17	0.689	1.333	1.740	2.110	2.567	2.89
18	0.688	1.330	1.734	2.101	2.552	2.87
19	0.688	1.328	1.729	2.093	2.539	2.86
20	0.687	1.325	1.725	2.086	2.528	2.84
21	0.686	1.323	1.721	2.080	2.518	2.83
22	0.686	1.321	1.717	2.074	2.508	2.81
23	0.685	1.319	1.714	2.069	2.500	2.80
24	0.685	1.318	1.711	2.064	2.492	2.79
25	0.684	1.316	1.708	2.060	2.485	2.78
26	0.684	1.315	1.706	2.056	2.479	2.77
27	0.684	1.314	1.703	2.052	2.473	2.77
28	0.683	1.313	1.701	2.048	2.467	2.76
29	0.683	1.311	1.699	2.045	2.462	2.75
30	0.683	1.310	1.697	2.042	2.457	2.75
40	0.681	1.303	1.684	2.021	2.423	2.70
60	0.679	1.296	1.671	2.000	2.390	2.66
120	0.677	1.289	1.658	1.980	2.358	2.61
∞	0.674	1.282	1.645	1.960	2.326	2.57

df = 10 + 10 - 2 = 18

$$t_{critical}(18) = 2.101$$

$$t = -1.68$$

$$|t| < t_{critical}$$

Null result!

Disadvantages of two independent samples

- Samples too small or too much variability in the data decrease the power of the test, increasing the probability of committing a type II error
- You need large sample size and low variability from subject to subject
- If you don't have enough \$ to pay more subjects, or you suspect your data may be affected by large variability from subject to subject.... use the same number of subjects and measure each of them before and after coffee!

Paired-sample T-Test

• Measure the same participants in both conditions \rightarrow power increases

	coffee		no coffee	difference	
Anne		35	39	-4	
Jim		25	32	-7	<i>mean</i> _{difference}
John		28	26	2	$l = \frac{l}{\sqrt{2}}$
Mary		25	35	-10	$\sqrt{S_{difference}^2}/N$
Peter		19	23	-4	
Carl		31	30	1	
Judy		18	22	-4	
Bob		30	32	-2	
Liz		26	28	-2	
Betty		23	33	-10	

- More participants to test
- Less variability associated with individual differences

Two general research strategies

Independent samples (unpaired or independent t-test)

- The two sets of data come from completely separate samples e.g., men and women
- between-subjects design

Related samples (paired or dependent t-test)

- the two sets of data come from the same sample e.g., students before and after coffee
- within-subject design

Use a within-subject design whenever possible!!

Different data types

- Suppose we want to test the hypothesis that coffee has an influence on performance in the exam
- Research hypothesis:

Students are more likely to pass an exam if they drink coffee

What is the dependent variable now?

Distributions

Time to finish homework

Continuous variable Normal distribution

Discrete variable Binomial distribution

| |3

Continuous variables

- Interval variables
 - measured along a continuous numerical scale with an arbitrary 0 point
 - assume equal intervals between single units
 - e.g., temperature: a difference of 10 degrees is always the same no matter how hot or cold might be
- Ratio variables
 - interval variables with an absolute zero point
 - the zero point corresponds to the absence of the thing being measured
 - e.g., weight: something could not weight a negative amount

Categorical variables

- Nominal variables
 - classify data into pre-defined categories with no intrinsic order
 - e.g., gender (male/female); colour (green/red/blu...)

- Ordinal variables
 - ▶ rank scores in the order of being larger or smaller
 - do not include information of the numeric difference between data point
 - e.g., the rank order of students based on their exam scores: 1st, 2nd, 3rd)

Classify the following variables

- Age
- Speed
- Month of birth
- Blood pressure
- Number of pizzas you can eat before fainting
- Whether or not you went to sleep before 12:00am
- Distance from home
- The number of letters in your last name
- Your level of happiness, rated from 1 to 10

What type of variables?

- Coffee has an influence on performance in exam
 - Both the independent and the dependent variables are categorical

• The χ^2 statistic is used to test hypotheses when both the independent and the dependent variables are categorical

Statistical hypotheses for a χ^2 test

 H_0 : The two variables are independent

 E.g., Consuming coffee and passing/failing the exam are independent events

 H_1 : The two variables are associated

• E.g., Coffee helps or hinders you to pass the exam

Some data

Student	coffee	no coffee
1	passed	
2		passed
3	failed	
4		passed
5		passed
6		passed
7		failed
8	passed	
9		passed
10		passed
11		passed
12	passed	
13		failed
14		passed
15	passed	
16	passed	
17	failed	
18		passed
19		passed
20		passed

• We want to know:

- How many students passed the exam after coffee
- How many students failed the exam after coffee
- How many students passed the exam without coffee
- How many students failed the exam without coffee

Contingency table of observed frequencies

• Step I: transform your data into a frequency table:

	pass	fail	sum row
coffee	11	7	 18
no coffee	33	9	42
sum column	44	16	60

- We want to compare the observed frequency in each cell with the expected frequencies.
- The expected frequencies represent the number of cases that would be observed in each cell if the null hypothesis was true (i.e., if the two variables are independent)

Expected frequencies

How do we calculate the expected frequencies?

• P(A, B) = P(A) P(B) if A and B are truly independent

$$E_{i,j} = \frac{Observed_{row_i} * Observed_{col_j}}{N}$$

	pass	fail	sum row
coffee			18
no coffee			42
sum column	44	16	60

Expected frequencies

How do we calculate the expected frequencies?

• P(A, B) = P(A) P(B) if A and B are truly independent

$$E_{i,j} = \frac{Observed_{row_i} * Observed_{col_j}}{N}$$

	pass	fail	sum row
coffee	13.2		18
no coffee			42
sum column	44	16	60

Model for χ^2

How do we calculate the expected frequencies?

• P(A, B) = P(A) P(B) if A and B are truly independent

$$E_{i,j} = \frac{Observed_{row_i} * Observed_{col j}}{N}$$

	pass	fail	sum row
coffee	13,2	4,8	18
no coffee	30,8	11,2	42
sum column	44	16	60

Compare model to observed values!

Calculating χ^2

Compare model to data:

The model:

	pass	fail
coffee	13,2	4,8
no coffee	30,8	11,2

	pass	fail
coffee	11	7
no coffee	33	9

$$\chi^{2} = \sum \frac{\left(Observed_{ij} - Model_{ij}\right)^{2}}{Model_{ij}}$$

 $\chi^{2} = \frac{(11 - 13.2)^{2}}{13.2} + \frac{(7 - 4.8)^{2}}{4.8} + \frac{(33 - 30.8)^{2}}{30.8} + \frac{(9 - 11.2)^{2}}{11.2} = 1.964$

The χ^2 distribution

the sampling distribution of the χ^2 statistic

The χ^2 distribution has only one parameter:

- its degrees of freedom
- as df increase, the distribution approaches a normal distribution

Finding the critical value for χ^2

Degrees of freedom:

 $(|evels_{coffee}-I) \times (|evels_{pass}-I) = I$

▶ χ²= 1.964

Table with critical values :

df	0.10	0.05	0.01	
1	2,71	3,84	6,63	
2	4,61	5,99	9,21	
3	6,25	7,81	11,34	

T test and χ^2 test

 Very useful in comparing two groups with either continuous or categorical dependant variable

Prerequisites:

- T test
 - Both groups are normally distributed
 - Both groups have the same variance
- χ^2 test
 - Expected values must be greater than 5

Other tests

Type of data	Continuous data from normal distributed population	Rank or Score (not normally distributed)	Binomial
Goal			
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test	Chi-square (χ ²)
Compare two unpaired groups	Unpaired t test (independant two- sample t test)	Mann-Whitney test	Chi square or Fisher's test
Compare two paired groups	Paired t test (dependant t test)	Wilcoxon test	McNemar's test

Exercise

- A cognitive psychologist wanted to test the effects of age on indepth processing of verbal information (list of words). He hypothesized that old people do less processing and therefore recall fewer words.
- He collected two samples (older and younger) of N=10.The younger subjects recalled on average 19.3 words (variance 7.122). The older subjects recalled on average 12.0 words (variance14.00)
- Test the hypothesis that the two samples are different, using a 0.05 alpha level