Introduction to Statistics Session 2

Grzegorz Chrupała

Saarland University
October 18, 2012

Outline

(1) Random variables and information theory

(2) Discrete probability distributions

Random variables

- Function $X: \Omega \rightarrow \mathbb{R}^{n}$ (typically $n=1$)
- It may be more convenient to work with real number than directly with events

Random variables

- Function $X: \Omega \rightarrow \mathbb{R}^{n}$ (typically $n=1$)
- It may be more convenient to work with real number than directly with events
- Coin toss: $X:\{H, T\} \rightarrow\{0,1\}$

Random variables

- Function $X: \Omega \rightarrow \mathbb{R}^{n}$ (typically $n=1$)
- It may be more convenient to work with real number than directly with events
- Coin toss: $X:\{H, T\} \rightarrow\{0,1\}$
- Sum of two dice throws: $\{1 . .6\}^{2} \rightarrow\{2 . .12\}$

Random variables

- Function $X: \Omega \rightarrow \mathbb{R}^{n}$ (typically $n=1$)
- It may be more convenient to work with real number than directly with events
- Coin toss: $X:\{H, T\} \rightarrow\{0,1\}$
- Sum of two dice throws: $\{1 . .6\}^{2} \rightarrow\{2 . .12\}$
- Probability mass function:

$$
\mathrm{p}(x)=P(X=x)=P(A) \text { where } A=\{\omega \in \Omega: X(\omega)=x\}
$$

Expectation

- Expectation is a mean (weighted average) of a random variable

$$
E(X)=\sum_{x} \mathrm{p}(x) \cdot x
$$

- Example: rolling a dice:

$$
E(X)=
$$

Expectation

- Expectation is a mean (weighted average) of a random variable

$$
E(X)=\sum_{x} \mathrm{p}(x) \cdot x
$$

- Example: rolling a dice:

$$
E(X)=\sum_{x=1}^{6} \mathrm{p}(x) x=\sum_{x=1}^{6} \frac{x}{6}=3.5
$$

Expectation

- Expectation is a mean (weighted average) of a random variable

$$
E(X)=\sum_{x} \mathrm{p}(x) \cdot x
$$

- Example: rolling a dice:

$$
E(X)=\sum_{x=1}^{6} \mathrm{p}(x) x=\sum_{x=1}^{6} \frac{x}{6}=3.5
$$

- A function $g(X)$ defines new random variable. In this case:

$$
E(g(X))=\sum_{x} \mathrm{p}(x) g(x)
$$

Example?

Expectation

- Expectation is a mean (weighted average) of a random variable

$$
E(X)=\sum_{x} \mathrm{p}(x) \cdot x
$$

- Example: rolling a dice:

$$
E(X)=\sum_{x=1}^{6} \mathrm{p}(x) x=\sum_{x=1}^{6} \frac{x}{6}=3.5
$$

- A function $g(X)$ defines new random variable. In this case:

$$
E(g(X))=\sum_{x} \mathrm{p}(x) g(x)
$$

Example?

- Also for two random variables:

$$
E(X+Y)=E(X)+E(Y)
$$

and if independent

Expectation

- Expectation is a mean (weighted average) of a random variable

$$
E(X)=\sum_{x} \mathrm{p}(x) \cdot x
$$

- Example: rolling a dice:

$$
E(X)=\sum_{x=1}^{6} \mathrm{p}(x) x=\sum_{x=1}^{6} \frac{x}{6}=3.5
$$

- A function $g(X)$ defines new random variable. In this case:

$$
E(g(X))=\sum_{x} \mathrm{p}(x) g(x)
$$

Example?

- Also for two random variables:

$$
E(X+Y)=E(X)+E(Y)
$$

and if independent

$$
E(X Y)=E(X) E(Y)
$$

Variance

- Variance measures how much values of a random variable vary

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]
$$

Variance

- Variance measures how much values of a random variable vary

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]
$$

- Standard deviation σ is the square root of the variance

Variance

- Variance measures how much values of a random variable vary

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]
$$

- Standard deviation σ is the square root of the variance
- What is the variance of a random variable describing a single throw of a dice?

Entropy

- Entropy is a measure of degree of uncertainty.

Entropy

- Entropy is a measure of degree of uncertainty.
- The most important concept in information theory

Entropy

- Entropy is a measure of degree of uncertainty.
- The most important concept in information theory
- Entropy is a property of a random variable X distributed according the pmf p

Entropy

- Entropy is a measure of degree of uncertainty.
- The most important concept in information theory
- Entropy is a property of a random variable X distributed according the pmf p

$$
H(X)=H(\mathrm{p})=E\left(-\log _{2}(\mathrm{p}(x))\right)=-\sum_{x} \mathrm{p}(x) \log _{2}(\mathrm{p}(x))
$$

Entropy

- Entropy is a measure of degree of uncertainty.
- The most important concept in information theory
- Entropy is a property of a random variable X distributed according the pmf p

$$
H(X)=H(\mathrm{p})=E\left(-\log _{2}(\mathrm{p}(x))\right)=-\sum_{x} \mathrm{p}(x) \log _{2}(\mathrm{p}(x))
$$

- For $\log _{2}(x)$ units are bits, for $\ln (x)$, nats

Entropy as amount of information

- You can think of entropy as measuring the cost of transmitting information about the result of an experiment
- Fair coin toss:

Entropy as amount of information

- You can think of entropy as measuring the cost of transmitting information about the result of an experiment
- Fair coin toss:

$$
\begin{align*}
H(X) & =-\sum_{x=0}^{1} \mathrm{p}(x) \log _{2}(\mathrm{p}(x)) \tag{1}\\
& =\frac{1}{2}\left[-\log _{2}\left(\frac{1}{2}\right)-\log _{2}\left(\frac{1}{2}\right)\right] \tag{2}\\
& =\frac{1}{2} \cdot 2 \tag{3}
\end{align*}
$$

Entropy of an unfair coin

Properties of entropy

- $H(p) \geq 0$

Properties of entropy

- $H(p) \geq 0$
- When is entropy $H(p)=0$?

Properties of entropy

- $H(p) \geq 0$
- When is entropy $H(p)=0$?
- The highest entropy corresponds to the most uniform distribution

Entropy: joint and conditional

- For two variables X and Y, the amount of information needed to specify values of both

$$
H(X, Y)=-\sum_{x} \sum_{y} \mathrm{p}(x, y) \log _{2}(\mathrm{p}(x, y))
$$

Entropy: joint and conditional

- For two variables X and Y, the amount of information needed to specify values of both

$$
H(X, Y)=-\sum_{x} \sum_{y} \mathrm{p}(x, y) \log _{2}(\mathrm{p}(x, y))
$$

- Conditional entropy: if we know the value of X, how much does to cost to transmit the value of Y ?

Entropy: joint and conditional

- For two variables X and Y, the amount of information needed to specify values of both

$$
H(X, Y)=-\sum_{x} \sum_{y} \mathrm{p}(x, y) \log _{2}(\mathrm{p}(x, y))
$$

- Conditional entropy: if we know the value of X, how much does to cost to transmit the value of Y ?

$$
\begin{align*}
H(Y \mid X) & =\sum_{x} \mathrm{p}(x) H(Y \mid X=x) \tag{4}\\
& =\sum_{x} \mathrm{p}(x)\left[-\sum_{y} \mathrm{p}(y \mid x) \log (\mathrm{p}(y \mid x))\right] \tag{5}\\
& =-\sum_{x} \sum_{y} \mathrm{p}(y \mid x) \mathrm{p}(x) \log (\mathrm{p}(y \mid x)) \tag{6}\\
& =-\sum_{x, y} \mathrm{p}(x, y) \log (\mathrm{p}(y \mid x)) \tag{7}
\end{align*}
$$

Conditional entropy: example

- Experiment: a toss of two fair coins
- X : how many heads?
- Y : is there at least one heads?

	X	Y
HH	2	1
HT	1	1
TT	0	0
TH	1	1

What is $H(X)$? What is $H(X \mid Y)$?

Chain rule for entropy

$$
\begin{aligned}
H(X, Y) & =H(X \mid Y)+H(Y) \\
H\left(X_{1}, \ldots, X_{n}\right) & =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\cdots+H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
\end{aligned}
$$

Mutual information

- From the chain rule we have

$$
H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

- Therefore

$$
H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

- This difference is known as Mutual information $I(X ; Y)$
- It measures how much knowing one of the variables reduces uncertainty about the other.

Joint and conditional entropy and mutual information

Mutual information

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(X)+H(Y)+H(X, Y) \\
& \cdots \\
& =\sum_{x} \sum_{y} \mathrm{p}(x, y) \log \left(\frac{\mathrm{p}(x, y)}{\mathrm{p}(x) \mathrm{p}(y)}\right)
\end{aligned}
$$

- What is $H(X \mid X)$?
- What is $I(X ; X)$?

Kullback Leibler divergence

- A measure of the difference between two probability mass functions p and q is Kullback Leibler divergence (relative entropy)

$$
D(p \| q)=\sum_{x} \mathrm{p}(x) \log \left(\frac{\mathrm{p}(x)}{\mathrm{q}(x)}\right)
$$

- Can be interpreted as an average number of bits wasted by encoding events distributed according to p with a code based on q
- We can define mutual information in terms of KL divergence:

$$
I(X ; Y)=D(\mathrm{p}(x, y) \| \mathrm{p}(x) \mathrm{p}(y))
$$

Outline

(1) Random variables and information theory

(2) Discrete probability distributions

Bernoulli distribution

- The most basic discrete probability distribution
- Describes the outcome of a single Bernoulli trial
- A Bernoulli trial is an experiment whose outcome is random and can be either of two possible outcomes, success and failure

Bernoulli distribution

- The most basic discrete probability distribution
- Describes the outcome of a single Bernoulli trial
- A Bernoulli trial is an experiment whose outcome is random and can be either of two possible outcomes, success and failure
- If the probability of success is p, then the probability of failure is $1-p$

Bernoulli distribution

- The most basic discrete probability distribution
- Describes the outcome of a single Bernoulli trial
- A Bernoulli trial is an experiment whose outcome is random and can be either of two possible outcomes, success and failure
- If the probability of success is p, then the probability of failure is $1-p$
- For example, a single toss of a (possibly biased) coin

The probability mass function of the Bernoulli distribution is

$$
\operatorname{Bernoulli}(k ; p)= \begin{cases}p & \text { if } k=1 \\ 1-p & \text { if } k=0\end{cases}
$$

The probability mass function of the Bernoulli distribution is

$$
\operatorname{Bernoulli}(k ; p)= \begin{cases}p & \text { if } k=1 \\ 1-p & \text { if } k=0\end{cases}
$$

It can also be expressed as

The probability mass function of the Bernoulli distribution is

$$
\operatorname{Bernoulli}(k ; p)= \begin{cases}p & \text { if } k=1 \\ 1-p & \text { if } k=0\end{cases}
$$

It can also be expressed as

$$
\operatorname{Bernoulli}(k ; p)=p^{k}(1-p)^{(1-k)} \text { for } k \in\{1,0\}
$$

The probability mass function of the Bernoulli distribution is

$$
\operatorname{Bernoulli}(k ; p)= \begin{cases}p & \text { if } k=1 \\ 1-p & \text { if } k=0\end{cases}
$$

It can also be expressed as

$$
\operatorname{Bernoulli}(k ; p)=p^{k}(1-p)^{(1-k)} \text { for } k \in\{1,0\}
$$

- What is the expectation of random variable distributed according to Bernoulli?

Binomial distribution

- One of the most important discrete probability distributions

Binomial distribution

- One of the most important discrete probability distributions
- Describes the outcome of a series of Bernoulli trials

Binomial distribution

- One of the most important discrete probability distributions
- Describes the outcome of a series of Bernoulli trials
- For example, a series of tosses of a (possibly biased) coin

Binomial distribution

$$
\operatorname{Binomial}(r, n ; p)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

where

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!}, 0 \leq r \leq n
$$

- Binomial $(r, n ; p)$ describes the probability of getting exactly r successes in n trials if the probability of success in an individual trial is p
- $\binom{n}{r}$ is the number of different orders in which we can get r successes in n trials
- Each attempt is independent, so we multiply $p r$ times (successes) and $(1-p), n-r$ times (failures)
- What is the probability of getting at most r successes?

Binomial distribution

$$
\operatorname{Binomial}(r, n ; p)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

where

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!}, 0 \leq r \leq n
$$

- Binomial $(r, n ; p)$ describes the probability of getting exactly r successes in n trials if the probability of success in an individual trial is p
- $\binom{n}{r}$ is the number of different orders in which we can get r successes in n trials
- Each attempt is independent, so we multiply $p r$ times (successes) and $(1-p), n-r$ times (failures)
- What is the probability of getting at most r successes?

$$
\sum_{k=0}^{r}\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial test example

- We have made an improvement to our POS tagging model.
- We run the old model and the new model on test sentences.
- The accuracy of the new model is better, but
- Is it because the system is better? If we repeated the experiment on many other test sentences, would be also get improved accuracy?
- Or maybe we got an improvement by chance

Null hypothesis

- Use binomial distribution to answer this question
- Focus on the tokens (words) where one of the models makes a mistake and the other gets the right answer
- There are 10 such cases. In 7 cases the new system is better.
- Assume that the new system is actually no better, and that the chance of it being better on any one word is pure chance, 0.5 . This is the null hypothesis.
- How likely are we to get at least 7 out of 10 better, given the null hypothesis?
- How about 60 out of 100 ? 550 out of 1000 ?

Null hypothesis

- Use binomial distribution to answer this question
- Focus on the tokens (words) where one of the models makes a mistake and the other gets the right answer
- There are 10 such cases. In 7 cases the new system is better.
- Assume that the new system is actually no better, and that the chance of it being better on any one word is pure chance, 0.5 . This is the null hypothesis.
- How likely are we to get at least 7 out of 10 better, given the null hypothesis?
- How about 60 out of 100 ? 550 out of 1000 ?
- 0.172, 0.028, 0.00086
- In R: pbinom(7, 10, prob=0.5)

Null hypothesis

- Use binomial distribution to answer this question
- Focus on the tokens (words) where one of the models makes a mistake and the other gets the right answer
- There are 10 such cases. In 7 cases the new system is better.
- Assume that the new system is actually no better, and that the chance of it being better on any one word is pure chance, 0.5.
This is the null hypothesis.
- How likely are we to get at least 7 out of 10 better, given the null hypothesis?
- How about 60 out of 100 ? 550 out of 1000 ?
- 0.172, 0.028, 0.00086
- In R: pbinom(7, 10, prob=0.5)
- Two-tailed test:
- Actually we should consider both getting at least $\mathbf{7}$ out of 10 or at most 3 out of 10

