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1 Random variables and information theory

2 Discrete probability distributions

Chrupala (Saarland) Stats October 18, 2012 2 / 23



Random variables

Function X : Ω→ Rn (typically n = 1)

It may be more convenient to work with real number than directly
with events

Coin toss: X : {H,T} → {0, 1}
Sum of two dice throws: {1..6}2 → {2..12}
Probability mass function:

p(x) = P(X = x) = P(A) where A = {ω ∈ Ω : X (ω) = x}

Chrupala (Saarland) Stats October 18, 2012 3 / 23



Random variables

Function X : Ω→ Rn (typically n = 1)

It may be more convenient to work with real number than directly
with events

Coin toss: X : {H,T} → {0, 1}

Sum of two dice throws: {1..6}2 → {2..12}
Probability mass function:

p(x) = P(X = x) = P(A) where A = {ω ∈ Ω : X (ω) = x}

Chrupala (Saarland) Stats October 18, 2012 3 / 23



Random variables

Function X : Ω→ Rn (typically n = 1)

It may be more convenient to work with real number than directly
with events

Coin toss: X : {H,T} → {0, 1}
Sum of two dice throws: {1..6}2 → {2..12}

Probability mass function:

p(x) = P(X = x) = P(A) where A = {ω ∈ Ω : X (ω) = x}

Chrupala (Saarland) Stats October 18, 2012 3 / 23



Random variables

Function X : Ω→ Rn (typically n = 1)

It may be more convenient to work with real number than directly
with events

Coin toss: X : {H,T} → {0, 1}
Sum of two dice throws: {1..6}2 → {2..12}
Probability mass function:

p(x) = P(X = x) = P(A) where A = {ω ∈ Ω : X (ω) = x}

Chrupala (Saarland) Stats October 18, 2012 3 / 23



Expectation
Expectation is a mean (weighted average) of a random variable

E (X ) =
∑
x

p(x) · x

Example: rolling a dice:

E (X ) =

6∑
x=1

p(x)x =
6∑

x=1

x

6
= 3.5

A function g(X ) defines new random variable. In this case:

E (g(X )) =
∑
x

p(x)g(x)

Example?
Also for two random variables:

E (X + Y ) = E (X ) + E (Y )

and if independent
E (XY ) = E (X )E (Y )
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Variance

Variance measures how much values of a random variable vary

Var(X ) = E [(X − E (X ))2]

Standard deviation σ is the square root of the variance

What is the variance of a random variable describing a single throw of
a dice?
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Entropy

Entropy is a measure of degree of uncertainty.

The most important concept in information theory

Entropy is a property of a random variable X distributed according
the pmf p

H(X ) = H(p) = E (− log2(p(x))) = −
∑
x

p(x) log2(p(x))

For log2(x) units are bits, for ln(x), nats
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Entropy as amount of information

You can think of entropy as measuring the cost of transmitting
information about the result of an experiment

Fair coin toss:

H(X ) = −
1∑

x=0

p(x) log2(p(x)) (1)

=
1

2
[− log2

(
1

2

)
− log2

(
1

2

)
] (2)

=
1

2
· 2 (3)
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Entropy of an unfair coin
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Properties of entropy

H(p) ≥ 0

When is entropy H(p) = 0?

The highest entropy corresponds to the most uniform distribution
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Entropy: joint and conditional
For two variables X and Y , the amount of information needed to
specify values of both

H(X ,Y ) = −
∑
x

∑
y

p(x , y) log2(p(x , y))

Conditional entropy: if we know the value of X , how much does to
cost to transmit the value of Y ?

H(Y |X ) =
∑
x

p(x)H(Y |X = x) (4)

=
∑
x

p(x)

[
−
∑
y

p(y |x) log(p(y |x))

]
(5)

= −
∑
x

∑
y

p(y |x)p(x) log(p(y |x)) (6)

= −
∑
x ,y

p(x , y) log(p(y |x)) (7)
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Conditional entropy: example

Experiment: a toss of two fair coins

X : how many heads?

Y : is there at least one heads?

X Y

HH 2 1
HT 1 1
TT 0 0
TH 1 1

What is H(X )? What is H(X |Y )?
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Chain rule for entropy

H(X ,Y ) = H(X |Y ) + H(Y )

H(X1, . . . ,Xn) = H(X1) + H(X2|X1) + · · ·+ H(Xn|X1, . . . ,Xn−1)
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Mutual information

From the chain rule we have

H(X ) + H(Y |X ) = H(Y ) + H(X |Y )

Therefore
H(X )− H(X |Y ) = H(Y )− H(Y |X )

This difference is known as Mutual information I (X ;Y )

It measures how much knowing one of the variables reduces
uncertainty about the other.
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Joint and conditional entropy and mutual information

Chrupala (Saarland) Stats October 18, 2012 14 / 23



Mutual information

I (X ;Y ) = H(X )− H(X |Y )

= H(X ) + H(Y ) + H(X ,Y )

· · ·

=
∑
x

∑
y

p(x , y) log

(
p(x , y)

p(x)p(y)

)

What is H(X |X )?

What is I (X ;X )?
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Kullback Leibler divergence

A measure of the difference between two probability mass functions p
and q is Kullback Leibler divergence (relative entropy)

D(p||q) =
∑
x

p(x) log

(
p(x)

q(x)

)
Can be interpreted as an average number of bits wasted by encoding
events distributed according to p with a code based on q

We can define mutual information in terms of KL divergence:

I (X ;Y ) = D(p(x , y)||p(x)p(y))
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Outline

1 Random variables and information theory

2 Discrete probability distributions
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Bernoulli distribution

The most basic discrete probability distribution

Describes the outcome of a single Bernoulli trial

A Bernoulli trial is an experiment whose outcome is random and can
be either of two possible outcomes, success and failure

If the probability of success is p, then the probability of failure is 1− p

For example, a single toss of a (possibly biased) coin
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The probability mass function of the Bernoulli distribution is

Bernoulli(k ; p) =

{
p if k = 1

1− p if k = 0

It can also be expressed as

Bernoulli(k; p) = pk(1− p)(1−k) for k ∈ {1, 0}

What is the expectation of random variable distributed according to
Bernoulli?
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Binomial distribution

One of the most important discrete probability distributions

Describes the outcome of a series of Bernoulli trials

For example, a series of tosses of a (possibly biased) coin
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Binomial distribution

Binomial(r , n; p) =

(
n

r

)
pr (1− p)n−r

where (
n

r

)
=

n!

(n − r)!r !
, 0 ≤ r ≤ n

Binomial(r , n; p) describes the probability of getting exactly r
successes in n trials if the probability of success in an individual trial
is p(n
r

)
is the number of different orders in which we can get r successes

in n trials
Each attempt is independent, so we multiply p r times (successes)
and (1− p), n − r times (failures)
What is the probability of getting at most r successes?

r∑
k=0

(
n

k

)
pk(1− p)n−k
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Binomial test example

We have made an improvement to our POS tagging model.

We run the old model and the new model on test sentences.

The accuracy of the new model is better, but
I Is it because the system is better? If we repeated the experiment on

many other test sentences, would be also get improved accuracy?
I Or maybe we got an improvement by chance
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Null hypothesis

Use binomial distribution to answer this question

Focus on the tokens (words) where one of the models makes a
mistake and the other gets the right answer

There are 10 such cases. In 7 cases the new system is better.

Assume that the new system is actually no better, and that the
chance of it being better on any one word is pure chance, 0.5.
This is the null hypothesis.

I How likely are we to get at least 7 out of 10 better, given the null
hypothesis?

I How about 60 out of 100? 550 out of 1000?

I 0.172, 0.028, 0.00086
I In R: pbinom(7, 10, prob=0.5)

Two-tailed test:
I Actually we should consider both getting at least 7 out of 10 or at

most 3 out of 10
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