Linear models for regression and classification

Grzegorz Chrupała

Saarland University

October 19, 2012

Outline

(1) Linear regression
(2) Classification
(3) Perceptron

4 Naïve Bayes
(5) Logistic regression

Outline

(1) Linear regression

(2) Classification

(3) Perceptron

Regression analysis

- Model relationships between variables

Regression analysis

- Model relationships between variables
- Specifically: model the dependent (output) variable as a function of the independent (input) variables

Regression analysis

- Model relationships between variables
- Specifically: model the dependent (output) variable as a function of the independent (input) variables
- Example:
- Describe how people's weight depends on their height

Regression analysis

- Model relationships between variables
- Specifically: model the dependent (output) variable as a function of the independent (input) variables
- Example:
- Describe how people's weight depends on their height
- Predict people's weight given their height

Sample data

Height Weight

1	1.47	52.2
2	1.50	53.1
3	1.52	54.4
4	1.55	55.8
5	1.57	57.2
6	1.60	58.5
7	1.63	59.9
8	1.65	61.2
9	1.68	63.0
10	1.70	64.4
11	1.73	66.2
12	1.75	68.0
13	1.78	69.9
14	1.80	72.1
15	1.83	74.4

Scatter plot

Model

- Single independent variable x
- Dependent variable y
- Model the relationship as a parametrized function $y=f(x)$:
- $f(x)=a x^{2}+b x+c$

Model

- Single independent variable x
- Dependent variable y
- Model the relationship as a parametrized function $y=f(x)$:
- $f(x)=a x^{2}+b x+c$
- $f(x)=a \sin (x)+b$

Model

- Single independent variable x
- Dependent variable y
- Model the relationship as a parametrized function

$$
\begin{aligned}
y= & f(x): \\
& \text { - } f(x)=a x^{2}+b x+c \\
& \text { - } f(x)=a \sin (x)+b \\
& f(x)=a x+b
\end{aligned}
$$

- We focus on linear regression

Linear Regression

- Training data: observations paired with outcomes
- Observations are described by independent variables (features, predictors)
- The model is a regression line $y=a x+b$ which best fits the observations
- a is the slope
- b is the intercept (bias)
- This model has two parameters (weigths, coefficients)
- There is only one independent variable $=x$

Best fit

- Residual: difference between true value y and predicted value $f(x)$
- Find a line which minimizes sum of squared residuals:

$$
\text { Error }=\sum_{i=0}^{N}\left(y^{(i)}-f\left(x^{(i)}\right)\right)^{2}
$$

Scatter plot

Prediction of weight from height

Is the choice of a linear relationship appropriate for this data?

Is the choice of a linear relationship appropriate for this data?

- Simplify: model a subject as a solid ball of radius r

Is the choice of a linear relationship appropriate for this data?

- Simplify: model a subject as a solid ball of radius r
- How will weight depend on radius?

Is the choice of a linear relationship appropriate for this data?

- Simplify: model a subject as a solid ball of radius r
- How will weight depend on radius?

$$
V=\frac{4}{3} \pi r^{3}
$$

Is the choice of a linear relationship appropriate for this data?

- Simplify: model a subject as a solid ball of radius r
- How will weight depend on radius?

$$
V=\frac{4}{3} \pi r^{3}
$$

- How can we test if this carries over to the real subjects?

Prediction of weight from height cubed

Multiple linear regression

- More generally $y=w_{0}+\sum_{i=1}^{d} w_{i} x_{i}$, where
- $y=$ outcome
- $w_{0}=$ intercept
- $x_{1} . . x_{d}=$ features vector and $w_{1} . . w_{d}$ weight vector
- Get rid of bias:

$$
g(\mathbf{x})=\sum_{i=0}^{d} w_{i} x_{i}=\mathbf{w} \cdot \mathbf{x}
$$

Learning linear regression

- Minimize sum squared error over N training examples

$$
\operatorname{Err}(\mathbf{w})=\sum_{n=1}^{N}\left(g\left(\mathbf{x}^{(n)}\right)-y^{(n)}\right)^{2}
$$

- Closed-form formula for choosing the best weights w:

$$
\mathbf{w}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
$$

where the matrix X contains training example features, and \mathbf{y} is the vector of outcomes.

Outline

(2) Classification

(3) Perceptron

Classification: An example

Positive examples are blank, negative are filled

Linear models

Think of training examples as points in d-dimensional space. Each dimension corresponds to one feature.

Linear models

Think of training examples as points in d-dimensional space. Each dimension corresponds to one feature.

A linear binary classifier defines a plane in the space which separates positive from negative examples.

Linear decision boundary

- A hyperplane is a generalization of a straight line to >2 dimensions

Linear decision boundary

- A hyperplane is a generalization of a straight line to >2 dimensions
- A hyperplane contains all the points in a d dimensional space satisfying the following equation:

$$
w_{1} x_{1}+w_{2} x_{2}, \ldots,+w_{d} x_{d}+w_{0}=0
$$

Linear decision boundary

- A hyperplane is a generalization of a straight line to >2 dimensions
- A hyperplane contains all the points in a d dimensional space satisfying the following equation:

$$
w_{1} x_{1}+w_{2} x_{2}, \ldots,+w_{d} x_{d}+w_{0}=0
$$

- Each coefficient w_{i} can be thought of as a weight on the corresponding feature

Linear decision boundary

- A hyperplane is a generalization of a straight line to >2 dimensions
- A hyperplane contains all the points in a d dimensional space satisfying the following equation:

$$
w_{1} x_{1}+w_{2} x_{2}, \ldots,+w_{d} x_{d}+w_{0}=0
$$

- Each coefficient w_{i} can be thought of as a weight on the corresponding feature
- The vector containing all the weights $\mathbf{w}=\left(w_{0}, \ldots, w_{d}\right)$ is the parameter vector or weigth vector

Normal vector

- Geometrically, the weight vector \mathbf{w} is a normal vector of the separating hyperplane

Normal vector

- Geometrically, the weight vector \mathbf{w} is a normal vector of the separating hyperplane
- A normal vector of a surface is any vector which is perpendicular to it

Normal vector

- Geometrically, the weight vector \mathbf{w} is a normal vector of the separating hyperplane
- A normal vector of a surface is any vector which is perpendicular to it

Hyperplane as a classifier

- Let

$$
g(\mathbf{x})=w_{1} x_{1}+w_{2} x_{2}, \ldots,+w_{d} x_{d}+w_{0}
$$

Hyperplane as a classifier

- Let

$$
g(\mathbf{x})=w_{1} x_{1}+w_{2} x_{2}, \ldots,+w_{d} x_{d}+w_{0}
$$

- Then

$$
y=\operatorname{sign}(g(\mathbf{x}))= \begin{cases}+1 & \text { if } g(\mathbf{x}) \geq 0 \\ -1 & \text { otherwise }\end{cases}
$$

Separating hyperplanes in 2 dimensions

Learning

- The goal of the learning process is to come up with a good weight vector \mathbf{w}

Learning

- The goal of the learning process is to come up with a good weight vector \mathbf{w}
- The learning process will use examples to guide the search of a good w

Learning

- The goal of the learning process is to come up with a good weight vector \mathbf{w}
- The learning process will use examples to guide the search of a good w
- Different notions of goodness exist, which yield different learning algorithms

Outline

Classification
(3) Perceptron

4 Naïve Bayes
(5) Logistic regression

Perceptron training

- How do we find a set of weights that separate our classes?

Perceptron training

- How do we find a set of weights that separate our classes?
- Perceptron: A simple mistake-driven online algorithm

Perceptron training

- How do we find a set of weights that separate our classes?
- Perceptron: A simple mistake-driven online algorithm

Start with a zero weight vector and process each training example in turn.

Perceptron training

- How do we find a set of weights that separate our classes?
- Perceptron: A simple mistake-driven online algorithm

Start with a zero weight vector and process each training example in turn.

If the current weight vector classifies the current example incorrectly, move the weight vector in the right direction.

Perceptron training

- How do we find a set of weights that separate our classes?
- Perceptron: A simple mistake-driven online algorithm

Start with a zero weight vector and process each training example in turn.

If the current weight vector classifies the current example incorrectly, move the weight vector in the right direction.

If weights stop changing, stop

Perceptron training

- How do we find a set of weights that separate our classes?
- Perceptron: A simple mistake-driven online algorithm

Start with a zero weight vector and process each training example in turn.

If the current weight vector classifies the current example incorrectly, move the weight vector in the right direction.

If weights stop changing, stop

- If examples are linearly separable, then this algorithm is guaranteed to converge to the solution vector

Update rule

- Binary classification, with classes +1 and -1

Update rule

- Binary classification, with classes +1 and -1
- Decision function $y^{\prime}=\operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$

Update rule

- Binary classification, with classes +1 and -1
- Decision function $y^{\prime}=\operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$
- How should we change \mathbf{w} to make $\mathbf{w} \cdot \mathbf{x}$ higher?

Update rule

- Binary classification, with classes +1 and -1
- Decision function $y^{\prime}=\operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$
- How should we change \mathbf{w} to make $\mathbf{w} \cdot \mathbf{x}$ higher?
- Or lower?

Update rule

- Binary classification, with classes +1 and -1
- Decision function $y^{\prime}=\operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$
- How should we change \mathbf{w} to make $\mathbf{w} \cdot \mathbf{x}$ higher?
- Or lower?
- Add or subtract \mathbf{x}

Fixed increment online perceptron algorithm

1: $\mathbf{W} \leftarrow \mathbf{0}$

Fixed increment online perceptron algorithm

1: $\mathbf{W} \leftarrow \mathbf{0}$
2: for $n=1 \ldots$ do

Fixed increment online perceptron algorithm

1: $\mathbf{W} \leftarrow \mathbf{0}$
2: for $n=1 \ldots$ do
3: if $y^{(n)}=\operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)$ then
4: pass

Fixed increment online perceptron algorithm

1: $\mathbf{W} \leftarrow \mathbf{0}$
2: for $n=1 \ldots$ do
3: if $y^{(n)}=\operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)$ then
4: pass
5: \quad else if $y^{(n)}=+1 \wedge \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)=-1 \quad$ then

Fixed increment online perceptron algorithm

1: $\mathbf{W} \leftarrow \mathbf{0}$
2: for $n=1 \ldots$ do
3: if $y^{(n)}=\operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)$ then
4: pass
5: \quad else if $y^{(n)}=+1 \wedge \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)=-1$ then
6: $\quad \mathbf{W} \leftarrow \mathbf{W}+\mathbf{X}^{(n)}$

Fixed increment online perceptron algorithm

1: $\mathbf{W} \leftarrow \mathbf{0}$
2: for $n=1 \ldots$ do
3: if $y^{(n)}=\operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)$ then
4: pass
5: \quad else if $y^{(n)}=+1 \wedge \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)=-1$ then
6: $\quad \mathbf{W} \leftarrow \mathbf{W}+\mathbf{X}^{(n)}$
7: \quad else if $y^{(n)}=-1 \wedge \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)=+1$ then

Fixed increment online perceptron algorithm

1: $\mathbf{W} \leftarrow \mathbf{0}$
2: for $n=1 \ldots$ do
3: if $y^{(n)}=\operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)$ then
4: pass
5: \quad else if $y^{(n)}=+1 \wedge \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)=-1$ then
6: $\quad \mathbf{W} \leftarrow \mathbf{W}+\mathbf{X}^{(n)}$
7: \quad else if $y^{(n)}=-1 \wedge \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)=+1$ then
8: $\quad \mathbf{W} \leftarrow \mathbf{W}-\mathbf{x}^{(n)}$

Fixed increment online perceptron algorithm

1: $\mathbf{W} \leftarrow \mathbf{0}$
2: for $n=1 \ldots$ do
3: if $y^{(n)}=\operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)$ then
4: pass
5: \quad else if $y^{(n)}=+1 \wedge \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)=-1$ then
6: $\quad \mathbf{W} \leftarrow \mathbf{W}+\mathbf{X}^{(n)}$
7: \quad else if $y^{(n)}=-1 \wedge \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}\right)=+1$ then
8: $\quad \mathbf{W} \leftarrow \mathbf{W}-\mathbf{x}^{(n)}$
9: return w

Or more compactly

```
PERCEPTRON}(\mp@subsup{x}{}{1:N},\mp@subsup{y}{}{1:N},I)
    1: w}\leftarrow\mathbf{0
    2: for }i=1\ldotsI\mathrm{ do
    3: for }n=1\ldotsN\mathrm{ do
    4: if }\mp@subsup{y}{}{(n)}(\mathbf{w}\cdot\mp@subsup{\mathbf{x}}{}{(n)})\leq0\mathrm{ then
    5:}\quad\mathbf{w}\leftarrow\mathbf{w}+\mp@subsup{y}{}{(n)}\mp@subsup{\mathbf{x}}{}{(n)
    6: return w
```


Weight averaging

- Although the algorithm is guaranteed to converge, the solution is not unique

Weight averaging

- Although the algorithm is guaranteed to converge, the solution is not unique
- Empirically, better generalization performance with weight averaging

Weight averaging

- Although the algorithm is guaranteed to converge, the solution is not unique
- Empirically, better generalization performance with weight averaging
- A method of avoiding overfitting

Weight averaging

- Although the algorithm is guaranteed to converge, the solution is not unique
- Empirically, better generalization performance with weight averaging
- A method of avoiding overfitting
- As final weight vector, use the mean of all the weight vector values for each step of the algorithm

Weight averaging

- Although the algorithm is guaranteed to converge, the solution is not unique
- Empirically, better generalization performance with weight averaging
- A method of avoiding overfitting
- As final weight vector, use the mean of all the weight vector values for each step of the algorithm
- (cf. regularization in a following session)

Outline

Classification

Perceptron

Probabilistic model

- Instead of thinking in terms of multidimensional space...

Probabilistic model

- Instead of thinking in terms of multidimensional space...
- Classification can be approached as a probability estimation problem

Probabilistic model

- Instead of thinking in terms of multidimensional space...
- Classification can be approached as a probability estimation problem
- We will try to find a probability distribution which

Probabilistic model

- Instead of thinking in terms of multidimensional space...
- Classification can be approached as a probability estimation problem
- We will try to find a probability distribution which
- Describes well our training data

Probabilistic model

- Instead of thinking in terms of multidimensional space...
- Classification can be approached as a probability estimation problem
- We will try to find a probability distribution which
- Describes well our training data
- Allows us to make accurate predictions

Probabilistic model

- Instead of thinking in terms of multidimensional space...
- Classification can be approached as a probability estimation problem
- We will try to find a probability distribution which
- Describes well our training data
- Allows us to make accurate predictions
- We'll look at Naive Bayes as a simplest example of a probabilistic classifier

Representation of examples

- We are trying to classify documents. Let's represent a document as a sequence of terms (words) it contains $\mathbf{t}=\left(t_{1} \ldots t_{n}\right)$

Representation of examples

- We are trying to classify documents. Let's represent a document as a sequence of terms (words) it contains $\mathbf{t}=\left(t_{1} \ldots t_{n}\right)$
- For (binary) classification we want to find the most probable class:

$$
\hat{y}=\underset{y \in\{-1,+1\}}{\operatorname{argmax}} P(Y=y \mid \mathbf{t})
$$

Representation of examples

- We are trying to classify documents. Let's represent a document as a sequence of terms (words) it contains $\mathbf{t}=\left(t_{1} \ldots t_{n}\right)$
- For (binary) classification we want to find the most probable class:

$$
\hat{y}=\underset{y \in\{-1,+1\}}{\operatorname{argmax}} P(Y=y \mid \mathbf{t})
$$

- Documents are close to unique: how do we condition on t ?

Representation of examples

- We are trying to classify documents. Let's represent a document as a sequence of terms (words) it contains $\mathbf{t}=\left(t_{1} \ldots t_{n}\right)$
- For (binary) classification we want to find the most probable class:

$$
\hat{y}=\underset{y \in\{-1,+1\}}{\operatorname{argmax}} P(Y=y \mid \mathbf{t})
$$

- Documents are close to unique: how do we condition on t ?
- Bayes' rule and independence assumptions

Bayes rule

Bayes rule determines how joint and conditional probabilities are related.

Bayes rule

Bayes rule determines how joint and conditional probabilities are related.

$$
P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{\sum_{y^{\prime}} P\left(X=x \mid Y=y^{\prime}\right) P\left(Y=y^{\prime}\right)}
$$

Bayes rule

Bayes rule determines how joint and conditional probabilities are related.

$$
P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{\sum_{y^{\prime}} P\left(X=x \mid Y=y^{\prime}\right) P\left(Y=y^{\prime}\right)}
$$

That is:

$$
\text { posterior }=\frac{\text { prior } \times \text { likelihood }}{\text { evidence }}
$$

Prior and likelihood

- With Bayes' rule we can invert the direction of conditioning

Prior and likelihood

- With Bayes' rule we can invert the direction of conditioning

$$
\begin{aligned}
\hat{y} & =\underset{y}{\operatorname{argmax}} \frac{P(Y=y) P(\mathbf{t} \mid Y=y)}{\sum_{y^{\prime}} P\left(Y=y^{\prime}\right) P\left(\mathbf{t} \mid Y=y^{\prime}\right)} \\
& =\underset{y}{\operatorname{argmax}} \frac{P(Y=y) P(\mathbf{t} \mid Y=y)}{Z} \\
& =\underset{y}{\operatorname{argmax}} P(Y=y) P(\mathbf{t} \mid Y=y)
\end{aligned}
$$

Prior and likelihood

- With Bayes' rule we can invert the direction of conditioning

$$
\begin{aligned}
\hat{y} & =\underset{y}{\operatorname{argmax}} \frac{P(Y=y) P(\mathbf{t} \mid Y=y)}{\sum_{y^{\prime}} P\left(Y=y^{\prime}\right) P\left(\mathbf{t} \mid Y=y^{\prime}\right)} \\
& =\underset{y}{\operatorname{argmax}} \frac{P(Y=y) P(\mathbf{t} \mid Y=y)}{Z} \\
& =\underset{y}{\operatorname{argmax}} P(Y=y) P(\mathbf{t} \mid Y=y)
\end{aligned}
$$

- Decomposed the task into estimating the prior $P(Y)$ (easy) and the likelihood $P(\mathbf{t} \mid Y=y)$

Conditional independence

- How to estimate $P(\mathbf{t} \mid Y=y)$?

Conditional independence

- How to estimate $P(\mathbf{t} \mid Y=y)$?
- Naively assume the occurrence of each word in the document is independent of the others, when conditioned on the class

Conditional independence

- How to estimate $P(\mathbf{t} \mid Y=y)$?
- Naively assume the occurrence of each word in the document is independent of the others, when conditioned on the class

$$
P(\mathbf{t} \mid Y=y)=\prod_{i=1}^{|\mathbf{t}|} P\left(t_{i} \mid Y=y\right)
$$

Naive Bayes

Putting it all together

Naive Bayes

Putting it all together

$$
\hat{y}=\underset{y}{\operatorname{argmax}} P(Y=y) \prod_{i=1}^{|\mathbf{t}|} P\left(t_{i} \mid Y=y\right)
$$

Decision function

- For binary classification:

Decision function

- For binary classification:

$$
\begin{aligned}
g(\mathbf{t}) & =\frac{P(Y=+1) \prod_{i=1}^{|\mathbf{t}|} P\left(t_{i} \mid Y=+1\right)}{P(Y=-1) \prod_{i=1}^{|t|} P\left(t_{i} \mid Y=-1\right)} \\
& =\frac{P(Y=+1)}{P(Y=-1)} \prod_{i=1}^{|t|} \frac{P\left(t_{i} \mid Y=+1\right)}{P\left(t_{i} \mid Y=-1\right)}
\end{aligned}
$$

Decision function

- For binary classification:

$$
\begin{aligned}
g(\mathbf{t})= & \frac{P(Y=+1) \prod_{i=1}^{|\mathbf{t}|} P\left(t_{i} \mid Y=+1\right)}{P(Y=-1) \prod_{i=1}^{|\mathbf{t}|} P\left(t_{i} \mid Y=-1\right)} \\
= & \frac{P(Y=+1)}{P(Y=-1)} \prod_{i=1}^{|\mathbf{t}|} \frac{P\left(t_{i} \mid Y=+1\right)}{P\left(t_{i} \mid Y=-1\right)} \\
& \hat{y}=\left\{\begin{array}{l}
+1 \text { if } g(\mathbf{t}) \geq 1 \\
-1 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Documents in vector notation

- Let's represent documents as vocabulary-size-dimensional binary vectors

Documents in vector notation

- Let's represent documents as vocabulary-size-dimensional binary vectors

Documents in vector notation

- Let's represent documents as vocabulary-size-dimensional binary vectors

	V_{1}	V_{2}	V_{3}
	Obama	Ferrari	voters

- Dimension i indicates how many times the $i^{\text {th }}$ vocabulary item appears in document \mathbf{x}

Naive Bayes in vector notation

Naive Bayes in vector notation

- Counts appear as exponents:

$$
g(\mathbf{x})=\frac{P(+1)}{P(-1)} \prod_{i=1}^{|V|}\left(\frac{P\left(V_{i} \mid+1\right)}{P\left(V_{i} \mid-1\right)}\right)^{x_{i}}
$$

Naive Bayes in vector notation

- Counts appear as exponents:

$$
g(\mathbf{x})=\frac{P(+1)}{P(-1)} \prod_{i=1}^{|V|}\left(\frac{P\left(V_{i} \mid+1\right)}{P\left(V_{i} \mid-1\right)}\right)^{x_{i}}
$$

- If we take the logarithm of the threshold $(\ln 1=0)$ and of $g(x)$, we'll get the same decision function

Naive Bayes in vector notation

- Counts appear as exponents:

$$
g(\mathbf{x})=\frac{P(+1)}{P(-1)} \prod_{i=1}^{|V|}\left(\frac{P\left(V_{i} \mid+1\right)}{P\left(V_{i} \mid-1\right)}\right)^{x_{i}}
$$

- If we take the logarithm of the threshold $(\ln 1=0)$ and of $g(x)$, we'll get the same decision function

$$
h(\mathbf{x})=\ln \left(\frac{P(+1)}{P(-1)}\right)+\sum_{i=1}^{|V|} \ln \left(\frac{P\left(V_{i} \mid+1\right)}{P\left(V_{i} \mid-1\right)}\right) x_{i}
$$

Linear classifier

- Remember the linear classifier?

Linear classifier

- Remember the linear classifier?

$$
\begin{array}{lll}
g(\mathbf{x})=w_{0} & +\sum_{i=1} w_{i} & x_{i} \\
g(\mathbf{x})=\ln \left(\frac{P(+1)}{P(-1)}\right) & +\sum_{i=1}^{|V|} \ln \left(\frac{P\left(V_{i} \mid+1\right)}{P\left(V_{i} \mid-1\right)}\right) & x_{i}
\end{array}
$$

Linear classifier

- Remember the linear classifier?

$$
g(\mathbf{x})=w_{0}
$$

$$
g(\mathbf{x})=\ln \left(\frac{P(+1)}{P(-1)}\right)+\sum_{i=1}^{|V|} \ln \left(\frac{P\left(V_{i} \mid+1\right)}{P\left(V_{i} \mid-1\right)}\right) x_{i}
$$

- Log prior ratio corresponds to the bias term

Linear classifier

- Remember the linear classifier?

$$
\begin{equation*}
g(\mathbf{x})=w_{0} \tag{i}
\end{equation*}
$$

$$
+\sum_{i=1}^{d} w_{i}
$$

$$
x_{i}
$$

$$
\begin{equation*}
g(\mathbf{x})=\ln \left(\frac{P(+1)}{P(-1)}\right) \tag{i}
\end{equation*}
$$

$$
+\sum_{i=1}^{|V|} \ln \left(\frac{P\left(V_{i} \mid+1\right)}{P\left(V_{i} \mid-1\right)}\right)
$$

- Log prior ratio corresponds to the bias term
- Log likelihood ratios correspond to feature weights

What is the difference

What is the difference

Training criterion and procedure

What is the difference

Training criterion and procedure
Perceptron

- Perceptron loss function

$$
\operatorname{error}(\mathbf{w}, D)=\sum_{(\mathbf{x}, y) \in D}\left\{\begin{array}{l}
0 \text { if } \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})=y \\
-y w \cdot x \text { otherwise }
\end{array}\right.
$$

What is the difference

Training criterion and procedure
Perceptron

- Perceptron loss function

$$
\operatorname{error}(\mathbf{w}, D)=\sum_{(\mathbf{x}, y) \in D}\left\{\begin{array}{l}
0 \text { if } \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})=y \\
-y w \cdot x \text { otherwise }
\end{array}\right.
$$

- Error-driven algorithm

Naive Bayes

Naive Bayes

- Maximum Likelihood criterion

Naive Bayes

- Maximum Likelihood criterion

$$
P(D \mid \theta)=\prod_{(\mathbf{x}, y) \in D} P(Y=y \mid \theta) P(x \mid Y=y, \theta)
$$

Naive Bayes

- Maximum Likelihood criterion

$$
P(D \mid \theta)=\prod_{(\mathbf{x}, y) \in D} P(Y=y \mid \theta) P(x \mid Y=y, \theta)
$$

- Find parameters which maximize the log likelihood

Naive Bayes

- Maximum Likelihood criterion

$$
P(D \mid \theta)=\prod_{(\mathbf{x}, y) \in D} P(Y=y \mid \theta) P(x \mid Y=y, \theta)
$$

- Find parameters which maximize the log likelihood

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \log (P(D \mid \theta))
$$

Naive Bayes

- Maximum Likelihood criterion

$$
P(D \mid \theta)=\prod_{(\mathbf{x}, y) \in D} P(Y=y \mid \theta) P(x \mid Y=y, \theta)
$$

- Find parameters which maximize the log likelihood

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \log (P(D \mid \theta))
$$

Parameters reduce to relative counts

Naive Bayes

- Maximum Likelihood criterion

$$
P(D \mid \theta)=\prod_{(\mathbf{x}, y) \in D} P(Y=y \mid \theta) P(x \mid Y=y, \theta)
$$

- Find parameters which maximize the log likelihood

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \log (P(D \mid \theta))
$$

Parameters reduce to relative counts

- Ad-hoc smoothing, maximum a posteriori) estimation , ...

Comparison

Model	Naive Bayes	Perceptron
Model power	Linear	Linear
Type	Generative	Discriminative
Distribution modeled	$P(\mathbf{x}, y)$	N / A
Independence assumptions	Strong	None

Outline

(1) Linear regression
(2) Classification
(3) Perceptron

4 Naïve Bayes
(5) Logistic regression

Probabilistic conditional model

Probabilistic conditional model

- Let's try to come up with a probabilistic model which has some of the advantages of perceptron

Probabilistic conditional model

- Let's try to come up with a probabilistic model which has some of the advantages of perceptron
- Model $P(y \mid \mathbf{x})$ directly, and not via $P(\mathbf{x}, y)$ and Bayes rule as in Naive Bayes

Probabilistic conditional model

- Let's try to come up with a probabilistic model which has some of the advantages of perceptron
- Model $P(y \mid \mathbf{x})$ directly, and not via $P(\mathbf{x}, y)$ and Bayes rule as in Naive Bayes
- Avoid issue of dependencies between features of \mathbf{x}

Probabilistic conditional model

- Let's try to come up with a probabilistic model which has some of the advantages of perceptron
- Model $P(y \mid \mathbf{x})$ directly, and not via $P(\mathbf{x}, y)$ and Bayes rule as in Naive Bayes
- Avoid issue of dependencies between features of \mathbf{x}
- We'll take linear regression as a starting point

Probabilistic conditional model

- Let's try to come up with a probabilistic model which has some of the advantages of perceptron
- Model $P(y \mid \mathbf{x})$ directly, and not via $P(\mathbf{x}, y)$ and Bayes rule as in Naive Bayes
- Avoid issue of dependencies between features of \mathbf{x}
- We'll take linear regression as a starting point
- The goal is to adapt regression to model class-conditional probability

Multiple linear regression

- Regression: $y=w_{0}+\sum_{i=1}^{d} w_{i} x_{i}$, where
- $y=$ outcome
- $w_{0}=$ intercept
- $x_{1} . . x_{d}=$ features vector and $w_{1} . . w_{d}$ weight vector
- More compact:

$$
g(\mathbf{x})=\sum_{i=0}^{d} w_{i} x_{i}=\mathbf{w} \cdot \mathbf{x}
$$

Logistic regression

Logistic regression

- In logistic regression we use the linear model to assign probabilities to class labels

Logistic regression

- In logistic regression we use the linear model to assign probabilities to class labels
- For binary classification, predict $p=P(Y=1 \mid \mathbf{x})$. But predictions of linear regression model are $\in \mathbb{R}$, whereas $p \in[0,1]$

Logistic function

- Instead predict logit function of the probability:

Logistic function

- Instead predict logit function of the probability:

$$
\ln \left(\frac{p}{1-p}\right)=\mathbf{w} \cdot \mathbf{x}
$$

Logistic function

- Instead predict logit function of the probability:

$$
\ln \left(\frac{p}{1-p}\right)=\mathbf{w} \cdot \mathbf{x}
$$

- After solving for p, we end up passing the dot product through the inverse logit or logistic or sigmoid function

Logistic function

- Instead predict logit function of the probability:

$$
\ln \left(\frac{p}{1-p}\right)=\mathbf{w} \cdot \mathbf{x}
$$

- After solving for p, we end up passing the dot product through the inverse logit or logistic or sigmoid function

$$
\begin{aligned}
p & =\frac{\exp (\mathbf{w} \cdot \mathbf{x})}{1+\exp (\mathbf{w} \cdot \mathbf{x})} \\
& =\frac{1}{1+\exp (-\mathbf{w} \cdot \mathbf{x})}
\end{aligned}
$$

Logistic function

Logistic regression - classification

- Still a linear model

Logistic regression - classification

- Still a linear model
- Example \mathbf{x} belongs to class 1 if:

$$
\begin{aligned}
\frac{p}{1-p} & >1 \\
e^{\mathbf{w} \cdot \mathbf{x}} & >1 \\
\mathbf{w} \cdot \mathbf{x} & >0 \\
\sum_{i=0}^{d} w_{i} x_{i} & >0
\end{aligned}
$$

Logistic regression - classification

- Still a linear model
- Example \mathbf{x} belongs to class 1 if:

$$
\begin{aligned}
\frac{p}{1-p} & >1 \\
e^{\mathbf{w} \cdot \mathbf{x}} & >1 \\
\mathbf{w} \cdot \mathbf{x} & >0 \\
\sum_{i=0}^{d} w_{i} x_{i} & >0
\end{aligned}
$$

- Equation $\mathbf{w} \cdot \mathbf{x}=0$ defines a hyperplane with points above belonging to class 1

Multinomial logistic regression

Logistic regression generalized to more than two classes

$$
P(Y=y \mid \mathbf{x}, \mathbf{W})=\frac{\exp \left(\mathbf{W}_{y \bullet} \cdot \mathbf{x}\right)}{\sum_{y^{\prime}} \exp \left(\mathbf{W}_{y^{\prime} \bullet} \cdot \mathbf{x}\right)}
$$

Learning parameters

Learning parameters

- Conditional likelihood estimation: choose the weights which make the probability of the observed values y be the highest, given the observations \mathbf{x}_{i}

Learning parameters

- Conditional likelihood estimation: choose the weights which make the probability of the observed values y be the highest, given the observations \mathbf{x}_{i}
- For the training set with N examples:

Learning parameters

- Conditional likelihood estimation: choose the weights which make the probability of the observed values y be the highest, given the observations \mathbf{x}_{i}
- For the training set with N examples:

$$
\begin{aligned}
\hat{\mathbf{W}} & =\underset{\mathbf{W}}{\operatorname{argmax}} \prod_{i=1}^{N} P\left(Y=y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{W}\right) \\
& =\underset{\mathbf{W}}{\operatorname{argmax}} \sum_{i=1}^{N} \log P\left(Y=y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{W}\right)
\end{aligned}
$$

Error function

Error function

Equivalently, we seek the value of the parameters which minimize the error function:

$$
\operatorname{Err}(\mathbf{W}, D)=-\sum_{n=1}^{N} \log P\left(Y=y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{W}\right)
$$

Error function

Equivalently, we seek the value of the parameters which minimize the error function:

$$
\operatorname{Err}(\mathbf{W}, D)=-\sum_{n=1}^{N} \log P\left(Y=y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{W}\right)
$$

where $D=\left\{\left(x^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$

A problem in convex optimization

- L-BFGS (Limited-memory

Broyden-Fletcher-Goldfarb-Shanno method)

- gradient descent
- conjugate gradient
- iterative scaling algorithms

Stochastic gradient descent

Stochastic gradient descent

Gradient descent

- A gradient is a slope of a function

Stochastic gradient descent

Gradient descent

- A gradient is a slope of a function
- That is, a set of partial derivatives, one for each dimension

Stochastic gradient descent

Gradient descent

- A gradient is a slope of a function
- That is, a set of partial derivatives, one for each dimension
- By following the gradient of a convex function we can descend to the bottom (minimum)

Gradient descent example

Gradient descent example

- Find $\operatorname{argmin}_{\theta} f(\theta)$ where $f(\theta)=\theta^{2}$

Gradient descent example

- Find $\operatorname{argmin}_{\theta} f(\theta)$ where $f(\theta)=\theta^{2}$
- Initial value of $\theta_{1}=-1$

Gradient descent example

- Find $\operatorname{argmin}_{\theta} f(\theta)$ where $f(\theta)=\theta^{2}$
- Initial value of $\theta_{1}=-1$
- Gradient function: $\nabla f(\theta)=2 \theta$

Gradient descent example

- Find $\operatorname{argmin}_{\theta} f(\theta)$ where $f(\theta)=\theta^{2}$
- Initial value of $\theta_{1}=-1$
- Gradient function: $\nabla f(\theta)=2 \theta$
- Update: $\theta^{(n+1)}=\theta^{(n)}-\eta \nabla f\left(\theta^{(n)}\right)$

Gradient descent example

- Find $\operatorname{argmin}_{\theta} f(\theta)$ where $f(\theta)=\theta^{2}$
- Initial value of $\theta_{1}=-1$
- Gradient function: $\nabla f(\theta)=2 \theta$
- Update: $\theta^{(n+1)}=\theta^{(n)}-\eta \nabla f\left(\theta^{(n)}\right)$
- The learning rate $\eta(=0.2)$ controls the speed of the descent

Gradient descent example

- Find $\operatorname{argmin}_{\theta} f(\theta)$ where $f(\theta)=\theta^{2}$
- Initial value of $\theta_{1}=-1$
- Gradient function: $\nabla f(\theta)=2 \theta$
- Update: $\theta^{(n+1)}=\theta^{(n)}-\eta \nabla f\left(\theta^{(n)}\right)$
- The learning rate $\eta(=0.2)$ controls the speed of the descent
- After first iteration: $\theta^{(2)}=-1-0.2(-2)=-0.6$

Gradient descent example

- Find $\operatorname{argmin}_{\theta} f(\theta)$ where $f(\theta)=\theta^{2}$
- Initial value of $\theta_{1}=-1$
- Gradient function: $\nabla f(\theta)=2 \theta$
- Update: $\theta^{(n+1)}=\theta^{(n)}-\eta \nabla f\left(\theta^{(n)}\right)$
- The learning rate $\eta(=0.2)$ controls the speed of the descent
- After first iteration: $\theta^{(2)}=-1-0.2(-2)=-0.6$
- After second iteration:

$$
\theta^{(3)}=-0.6-0.2(-1.2)=-0.36
$$

Five iterations of gradient descent

Stochastic

- We could compute the gradient of error for the full dataset before each update

Stochastic

- We could compute the gradient of error for the full dataset before each update
- Instead

Stochastic

- We could compute the gradient of error for the full dataset before each update
- Instead
- Compute the gradient of the error for a single example

Stochastic

- We could compute the gradient of error for the full dataset before each update
- Instead
- Compute the gradient of the error for a single example
- update the weight

Stochastic

- We could compute the gradient of error for the full dataset before each update
- Instead
- Compute the gradient of the error for a single example
- update the weight
- Move on to the next example

Stochastic

- We could compute the gradient of error for the full dataset before each update
- Instead
- Compute the gradient of the error for a single example
- update the weight
- Move on to the next example
- On average, we'll move in the right direction

Stochastic

- We could compute the gradient of error for the full dataset before each update
- Instead
- Compute the gradient of the error for a single example
- update the weight
- Move on to the next example
- On average, we'll move in the right direction
- Efficient, online algorithm

Error gradient

- The gradient of the error function is the set of partial derivatives of the error function with respect to the parameters $\mathbf{W}_{y i}$

$$
\begin{aligned}
\nabla_{y, i} \operatorname{Err}(D, \mathbf{W}) & =\frac{\partial}{\partial \mathbf{W}_{y i}}\left(-\sum_{n=1}^{N} \log P\left(Y=y \mid \mathbf{x}^{(n)}, \mathbf{W}\right)\right) \\
& =-\sum_{n=1}^{N} \frac{\partial}{\partial \mathbf{W}_{y i}} \log P\left(Y=y \mid \mathbf{x}^{(n)}, \mathbf{W}\right)
\end{aligned}
$$

Update

- For the correct class $\left(y=y^{(n)}\right)$

$$
\mathbf{W}_{y i}^{(n)}=\mathbf{W}_{y i}^{(n-1)}+\eta x_{i}^{(n)}\left(1-P\left(Y=y \mid \mathbf{x}^{(n)}, \mathbf{W}\right)\right)
$$

where $1-P\left(Y=y \mid \mathbf{x}^{(n)}, \mathbf{W}\right)$ is the residual

- For all other classes $\left(y \neq y^{(n)}\right)$

$$
\mathbf{W}_{y i}^{(n)}=\mathbf{W}_{y i}^{(n-1)}-\eta x_{i}^{(n)} P\left(Y=y \mid \mathbf{x}^{(n)}, \mathbf{W}\right)
$$

Logistics Regression SGD vs Perceptron

$$
\begin{aligned}
\mathbf{w}^{(n)} & =\mathbf{w}^{(n-1)}+1 \mathbf{x}^{(n)} \\
\mathbf{W}_{y i}^{(n)} & =\mathbf{W}_{y i}^{(n-1)}+\eta x_{i}^{(n)} \quad\left(1-P\left(Y=y \mid \mathbf{x}^{(n)}, \mathbf{W}\right)\right)
\end{aligned}
$$

- Very similar update!
- Perceptron is simply an instantiation of SGD for a particular error function
- The perceptron criterion: for a correctly classified example zero error; for a misclassified example $-y^{(n)} \mathbf{w} \cdot \mathbf{x}^{(n)}$

Comparison

Model	Naive Bayes	Perceptron	Log. regression
Model power	Linear	Linear	Linear
Type	Generative	Discriminative	Discriminative
Distribution	$P(\mathbf{x}, y)$	N/A	$P(y \mid \mathbf{x})$
Independence	Strong	None	None

The end

Efficient averaged perceptron algorithm

Perceptron $\left(x^{1: N}, y^{1: N}, I\right)$:

1: $\mathbf{w} \leftarrow \mathbf{0} ; \mathbf{w}_{\mathbf{a}} \leftarrow \mathbf{0}$
2: $b \leftarrow 0 ; b_{a} \leftarrow 0$
3: $c \leftarrow 1$
4: for $i=1 \ldots I$ do
5: \quad for $n=1 \ldots N$ do
6: \quad if $y^{(n)}\left(\mathbf{w} \cdot \mathbf{x}^{(n)}+b\right) \leq 0$ then
7: $\quad \mathbf{W} \leftarrow \mathbf{w}+y^{(n)} \mathbf{x}^{(n)} ; b \leftarrow b+y^{(n)}$
8: $\quad \mathbf{w}_{\mathbf{a}} \leftarrow \mathbf{w}_{\mathbf{a}}+c y^{(n)} \mathbf{x}^{(n)} ; b_{a} \leftarrow b_{a}+c y^{(n)}$
9: $\quad c \leftarrow c+1$
10: $\boldsymbol{r e t u r n}\left(\mathbf{w}-\mathbf{w}_{\mathbf{a}} / c, b-b_{a} / c\right)$

