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4 Näıve Bayes

5 Logistic regression

Chrupala (UdS) Linear models October 19, 2012 2 / 89



Outline

1 Linear regression

2 Classification

3 Perceptron
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Regression analysis

Model relationships between variables

Specifically: model the dependent (output) variable
as a function of the independent (input) variables
Example:

I Describe how people’s weight depends on their height
I Predict people’s weight given their height
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Sample data
Height Weight

1 1.47 52.2

2 1.50 53.1

3 1.52 54.4

4 1.55 55.8

5 1.57 57.2

6 1.60 58.5

7 1.63 59.9

8 1.65 61.2

9 1.68 63.0

10 1.70 64.4

11 1.73 66.2

12 1.75 68.0

13 1.78 69.9

14 1.80 72.1

15 1.83 74.4
Chrupala (UdS) Linear models October 19, 2012 5 / 89



Scatter plot

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.50 1.55 1.60 1.65 1.70 1.75 1.80

55
60

65
70

75

Height

W
ei

gh
t

Chrupala (UdS) Linear models October 19, 2012 6 / 89



Model

Single independent variable x

Dependent variable y

Model the relationship as a parametrized function
y = f(x):

I f(x) = ax2 + bx+ c

I f(x) = a sin(x) + b
I f(x) = ax+ b

We focus on linear regression
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Linear Regression

Training data: observations paired with outcomes

Observations are described by independent variables
(features, predictors)
The model is a regression line y = ax+ b which
best fits the observations

I a is the slope
I b is the intercept (bias)
I This model has two parameters (weigths, coefficients)
I There is only one independent variable = x
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Best fit

Residual: difference between true value y and
predicted value f(x)

Find a line which minimizes sum of squared
residuals:

Error =
N∑
i=0

(y(i) − f(x(i)))2
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Prediction of weight from height
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Is the choice of a linear relationship appropriate for this
data?

Simplify: model a subject as a solid ball of radius r

How will weight depend on radius?

V =
4

3
πr3

How can we test if this carries over to the real
subjects?
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Prediction of weight from height cubed
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Multiple linear regression

More generally y = w0 +
∑d

i=1wixi, where
I y = outcome
I w0 = intercept
I x1..xd = features vector and w1..wd weight vector
I Get rid of bias:

g(x) =
d∑

i=0

wixi = w · x
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Learning linear regression

Minimize sum squared error over N training
examples

Err(w) =
N∑
n=1

(g(x(n))− y(n))2

Closed-form formula for choosing the best weights
w:

w = (XTX)−1XTy

where the matrix X contains training example
features, and y is the vector of outcomes.
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4 Näıve Bayes

5 Logistic regression

Chrupala (UdS) Linear models October 19, 2012 16 / 89



Classification: An example
Positive examples are blank, negative are filled
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Linear models

Think of training examples as points in d-dimensional
space. Each dimension corresponds to one feature.

A linear binary classifier defines a plane in the space
which separates positive from negative examples.
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Linear decision boundary
A hyperplane is a generalization of a straight line to
> 2 dimensions

A hyperplane contains all the points in a d
dimensional space satisfying the following equation:

w1x1 + w2x2, . . . ,+wdxd + w0 = 0

Each coefficient wi can be thought of as a weight
on the corresponding feature

The vector containing all the weights
w = (w0, . . . , wd) is the parameter vector or weigth
vector
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Normal vector
Geometrically, the weight vector w is a normal
vector of the separating hyperplane

A normal vector of a surface is any vector which is
perpendicular to it
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Hyperplane as a classifier

Let

g(x) = w1x1 + w2x2, . . . ,+wdxd + w0

Then

y = sign(g(x)) =

{
+1 if g(x) ≥ 0

−1 otherwise
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Separating hyperplanes in 2 dimensions
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Learning

The goal of the learning process is to come up with
a good weight vector w

The learning process will use examples to guide the
search of a good w

Different notions of goodness exist, which yield
different learning algorithms
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Perceptron training
How do we find a set of weights that separate our
classes?

Perceptron: A simple mistake-driven online
algorithm

I Start with a zero weight vector and process each training
example in turn.

I If the current weight vector classifies the current example
incorrectly, move the weight vector in the right direction.

I If weights stop changing, stop

If examples are linearly separable, then this
algorithm is guaranteed to converge to the solution
vector
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Update rule

Binary classification, with classes +1 and −1

Decision function y′ = sign(w · x)
How should we change w to make w · x higher?

Or lower?

Add or subtract x
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Fixed increment online perceptron
algorithm

1: w← 0

2: for n = 1... do
3: if y(n) = sign(w · x(n)) then
4: pass
5: else if y(n) = +1 ∧ sign(w · x(n)) = −1 then
6: w← w + x(n)

7: else if y(n) = −1 ∧ sign(w · x(n)) = +1 then
8: w← w − x(n)

9: return w
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Or more compactly

Perceptron(x1:N , y1:N , I):
1: w← 0
2: for i = 1...I do
3: for n = 1...N do
4: if y(n)(w · x(n)) ≤ 0 then
5: w← w + y(n)x(n)

6: return w

Chrupala (UdS) Linear models October 19, 2012 28 / 89



Weight averaging

Although the algorithm is guaranteed to converge,
the solution is not unique

Empirically, better generalization performance with
weight averaging

I A method of avoiding overfitting
I As final weight vector, use the mean of all the weight

vector values for each step of the algorithm
I (cf. regularization in a following session)
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Outline

1 Linear regression

2 Classification

3 Perceptron

4 Näıve Bayes

5 Logistic regression
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Probabilistic model

Instead of thinking in terms of multidimensional
space...

Classification can be approached as a probability
estimation problem
We will try to find a probability distribution which

I Describes well our training data
I Allows us to make accurate predictions

We’ll look at Naive Bayes as a simplest example of
a probabilistic classifier
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Representation of examples

We are trying to classify documents. Let’s represent
a document as a sequence of terms (words) it
contains t = (t1...tn)

For (binary) classification we want to find the most
probable class:

ŷ = argmax
y∈{−1,+1}

P (Y = y|t)

Documents are close to unique: how do we
condition on t?

Bayes’ rule and independence assumptions
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Bayes rule

Bayes rule determines how joint and conditional
probabilities are related.

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)∑
y′ P (X = x|Y = y′)P (Y = y′)

That is:

posterior =
prior× likelihood

evidence
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Prior and likelihood

With Bayes’ rule we can invert the direction of
conditioning

ŷ = argmax
y

P (Y = y)P (t|Y = y)∑
y′ P (Y = y′)P (t|Y = y′)

= argmax
y

P (Y = y)P (t|Y = y)

Z

= argmax
y

P (Y = y)P (t|Y = y)

Decomposed the task into estimating the prior
P (Y ) (easy) and the likelihood P (t|Y = y)
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Conditional independence

How to estimate P (t|Y = y)?

Naively assume the occurrence of each word in the
document is independent of the others, when
conditioned on the class

P (t|Y = y) =

|t|∏
i=1

P (ti|Y = y)
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Naive Bayes

Putting it all together

ŷ = argmax
y

P (Y = y)

|t|∏
i=1

P (ti|Y = y)
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ŷ = argmax
y

P (Y = y)

|t|∏
i=1

P (ti|Y = y)

Chrupala (UdS) Linear models October 19, 2012 60 / 89



Decision function

For binary classification:

g(t) =
P (Y = +1)

∏|t|
i=1 P (ti|Y = +1)

P (Y = −1)
∏|t|

i=1 P (ti|Y = −1)

=
P (Y = +1)

P (Y = −1)

|t|∏
i=1

P (ti|Y = +1)

P (ti|Y = −1)

ŷ =

{
+1 if g(t) ≥ 1

−1 otherwise
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Documents in vector notation

Let’s represent documents as
vocabulary-size-dimensional binary vectors

V1 V2 V3 V4
Obama Ferrari voters movies

x = ( 1 0 2 0 )

Dimension i indicates how many times the ith

vocabulary item appears in document x

Chrupala (UdS) Linear models October 19, 2012 62 / 89



Documents in vector notation

Let’s represent documents as
vocabulary-size-dimensional binary vectors

V1 V2 V3 V4
Obama Ferrari voters movies

x = ( 1 0 2 0 )

Dimension i indicates how many times the ith

vocabulary item appears in document x

Chrupala (UdS) Linear models October 19, 2012 62 / 89



Documents in vector notation

Let’s represent documents as
vocabulary-size-dimensional binary vectors

V1 V2 V3 V4
Obama Ferrari voters movies

x = ( 1 0 2 0 )

Dimension i indicates how many times the ith

vocabulary item appears in document x

Chrupala (UdS) Linear models October 19, 2012 62 / 89



Naive Bayes in vector notation

Counts appear as exponents:

g(x) =
P (+1)

P (−1)

|V |∏
i=1

(
P (Vi|+ 1)

P (Vi| − 1)

)xi

If we take the logarithm of the threshold (ln 1 = 0)
and of g(x), we’ll get the same decision function

h(x) = ln

(
P (+1)

P (−1)

)
+

|V |∑
i=1

ln

(
P (Vi|+ 1)

P (Vi| − 1)

)
xi
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Linear classifier

Remember the linear classifier?

g(x) =w0 +
d∑
i=1

wi xi

g(x) = ln

(
P (+1)

P (−1)

)
+

|V |∑
i=1

ln

(
P (Vi|+ 1)

P (Vi| − 1)

)
xi

Log prior ratio corresponds to the bias term

Log likelihood ratios correspond to feature weights
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What is the difference

Training criterion and procedure

Perceptron
Perceptron loss function

error(w, D) =
∑

(x,y)∈D

{
0 if sign(w · x) = y

−yw · x otherwise

Error-driven algorithm
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Naive Bayes

Maximum Likelihood criterion

P (D|θ) =
∏

(x,y)∈D

P (Y = y|θ)P (x|Y = y, θ)

Find parameters which maximize the log likelihood

θ̂ = argmax
θ

log(P (D|θ))

Parameters reduce to relative counts

Ad-hoc smoothing, maximum a posteriori)
estimation , ...
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Comparison

Model Naive Bayes Perceptron
Model power Linear Linear
Type Generative Discriminative
Distribution modeled P (x, y) N/A
Independence assumptions Strong None
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Outline

1 Linear regression

2 Classification

3 Perceptron

4 Näıve Bayes

5 Logistic regression
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Probabilistic conditional model

Let’s try to come up with a probabilistic model
which has some of the advantages of perceptron

Model P (y|x) directly, and not via P (x, y) and
Bayes rule as in Naive Bayes

Avoid issue of dependencies between features of x
We’ll take linear regression as a starting point

I The goal is to adapt regression to model
class-conditional probability
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Multiple linear regression

Regression: y = w0 +
∑d

i=1wixi, where
I y = outcome
I w0 = intercept
I x1..xd = features vector and w1..wd weight vector
I More compact:

g(x) =
d∑

i=0

wixi = w · x
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Logistic regression

In logistic regression we use the linear model to
assign probabilities to class labels

For binary classification, predict p = P (Y = 1|x).
But predictions of linear regression model are ∈ R,
whereas p ∈ [0, 1]
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Logistic function
Instead predict logit function of the probability:

ln

(
p

1− p

)
= w · x

After solving for p, we end up passing the dot
product through the inverse logit or logistic or
sigmoid function

p =
exp(w · x)

1 + exp(w · x)

=
1

1 + exp(−w · x)
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Logistic function
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Logistic regression - classification
Still a linear model

Example x belongs to class 1 if:

p

1− p
> 1

ew·x > 1

w · x > 0
d∑
i=0

wixi > 0

Equation w · x = 0 defines a hyperplane with points
above belonging to class 1
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Multinomial logistic regression

Logistic regression generalized to more than two classes

P (Y = y|x,W) =
exp(Wy• · x)∑
y′ exp(Wy′• · x)
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Learning parameters

Conditional likelihood estimation: choose the
weights which make the probability of the observed
values y be the highest, given the observations xi
For the training set with N examples:

Ŵ = argmax
W

N∏
i=1

P (Y = y(n)|x(n),W)

= argmax
W

N∑
i=1

logP (Y = y(n)|x(n),W)

Chrupala (UdS) Linear models October 19, 2012 76 / 89



Learning parameters

Conditional likelihood estimation: choose the
weights which make the probability of the observed
values y be the highest, given the observations xi

For the training set with N examples:
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Ŵ = argmax
W

N∏
i=1

P (Y = y(n)|x(n),W)

= argmax
W

N∑
i=1

logP (Y = y(n)|x(n),W)

Chrupala (UdS) Linear models October 19, 2012 76 / 89



Learning parameters

Conditional likelihood estimation: choose the
weights which make the probability of the observed
values y be the highest, given the observations xi
For the training set with N examples:
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Error function

Equivalently, we seek the value of the parameters which
minimize the error function:

Err(W, D) = −
N∑
n=1

logP (Y = y(n)|x(n),W)

where D = {(x(n), y(n))}Nn=1
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A problem in convex optimization

L-BFGS (Limited-memory
Broyden-Fletcher-Goldfarb-Shanno method)

gradient descent

conjugate gradient

iterative scaling algorithms
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Stochastic gradient descent

Gradient descent
A gradient is a slope of a function

That is, a set of partial derivatives, one for each
dimension

By following the gradient of a convex function we
can descend to the bottom (minimum)
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Gradient descent example

Find argminθ f(θ) where f(θ) = θ2

Initial value of θ1 = −1
Gradient function: ∇f(θ) = 2θ

Update: θ(n+1) = θ(n) − η∇f(θ(n))
The learning rate η (= 0.2) controls the speed of
the descent

After first iteration: θ(2) = −1− 0.2(−2) = −0.6
After second iteration:
θ(3) = −0.6− 0.2(−1.2) = −0.36
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Five iterations of gradient descent
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Stochastic

We could compute the gradient of error for the full
dataset before each update

Instead
I Compute the gradient of the error for a single example
I update the weight
I Move on to the next example

On average, we’ll move in the right direction

Efficient, online algorithm
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Error gradient

The gradient of the error function is the set of
partial derivatives of the error function with respect
to the parameters Wyi

∇y,iErr(D,W) =
∂

∂Wyi

(
−

N∑
n=1

logP (Y = y|x(n),W)

)

= −
N∑

n=1

∂

∂Wyi

logP (Y = y|x(n),W)
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Update

For the correct class (y = y(n))

W
(n)
yi = W

(n−1)
yi + ηx

(n)
i (1− P (Y = y|x(n),W))

where 1− P (Y = y|x(n),W) is the residual

For all other classes (y 6= y(n))

W
(n)
yi = W

(n−1)
yi − ηx(n)i P (Y = y|x(n),W)
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Logistics Regression SGD vs Perceptron

w(n) = w(n−1)+ 1x(n)

W
(n)
yi = W

(n−1)
yi + ηx

(n)
i (1− P (Y = y|x(n),W))

Very similar update!

Perceptron is simply an instantiation of SGD for a
particular error function

The perceptron criterion: for a correctly classified
example zero error; for a misclassified example
−y(n)w · x(n)

Chrupala (UdS) Linear models October 19, 2012 86 / 89



Comparison

Model Naive Bayes Perceptron Log. regression
Model power Linear Linear Linear
Type Generative Discriminative Discriminative
Distribution P (x, y) N/A P (y|x)
Independence Strong None None
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The end
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Efficient averaged perceptron algorithm

Perceptron(x1:N , y1:N , I):
1: w← 0 ; wa ← 0
2: b← 0 ; ba ← 0
3: c← 1
4: for i = 1...I do
5: for n = 1...N do
6: if y(n)(w · x(n) + b) ≤ 0 then
7: w← w + y(n)x(n) ; b← b+ y(n)

8: wa ← wa + cy(n)x(n) ; ba ← ba + cy(n)

9: c← c+ 1
10: return (w −wa/c, b− ba/c)
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