Introduction to statistics

Session 1

Grzegorz Chrupała

Saarland University

October 9, 2012

Key concepts

- Axioms of probability

Key concepts

- Axioms of probability
- Chain rule and Bayes theorem

Key concepts

- Axioms of probability
- Chain rule and Bayes theorem
- Random variables

Key concepts

- Axioms of probability
- Chain rule and Bayes theorem
- Random variables
- Entropy

Key concepts

- Axioms of probability
- Chain rule and Bayes theorem
- Random variables
- Entropy
- Hypothesis testing

Key concepts

- Axioms of probability
- Chain rule and Bayes theorem
- Random variables
- Entropy
- Hypothesis testing
- Binomial and normal distributions

Key concepts

- Axioms of probability
- Chain rule and Bayes theorem
- Random variables
- Entropy
- Hypothesis testing
- Binomial and normal distributions
- Linear and logistic regression

Key concepts

- Axioms of probability
- Chain rule and Bayes theorem
- Random variables
- Entropy
- Hypothesis testing
- Binomial and normal distributions
- Linear and logistic regression

If you are familiar with these, you don't need this course!

Course structure

- Oct 8 - Oct 9

Basic concepts of Probability and Information theory with Grzegorz Chrupała gchrupala@lsv.uni-saarland.de

Course structure

- Oct 8 - Oct 9

Basic concepts of Probability and Information theory with Grzegorz Chrupała
gchrupala@lsv.uni-saarland.de

- Oct 10 - Oct 12

Statistics for experimental science with Francesca Delogu

Course structure

- Oct 8 - Oct 9

Basic concepts of Probability and Information theory with Grzegorz Chrupała gchrupala@lsv.uni-saarland.de

- Oct 10 - Oct 12

Statistics for experimental science with Francesca Delogu

- Oct 15 - Oct 17

Statistics for NLP - reading group

Course structure

- Oct 8 - Oct 9

Basic concepts of Probability and Information theory with Grzegorz Chrupała
gchrupala@lsv.uni-saarland.de

- Oct 10 - Oct 12

Statistics for experimental science with Francesca Delogu

- Oct 15 - Oct 17

Statistics for NLP - reading group

- Oct 18-19

Linear models: Grzegorz Chrupała

Textbook and topics

- Foundations of Statistical NLP, Manning and Schütze
- For each of the first three sessions next week everybody reads a section of the book.
- A group of students will present the material (45-60 min).
- Follow up with exercises and discussion.

Suggested topics

- Collocations (5)
- Lexical acquisition (8)
- Clustering (14)

Other topic possible (talk to me!)

- Organize yourselves into three groups and agree on topics by tomorrow
- Within each group, coordinate and decide who presents which subsection

Today: Basic concepts in probability theory

- Probability notation $P(X \mid Y)$
- What does this expression mean?
- How can we manipulate it?
- How can we estimate its value in practice?

Three aspects of statistics

- Descriptive. Mean or median grade at a university. Distribution of heights among a population of country

Three aspects of statistics

- Descriptive. Mean or median grade at a university. Distribution of heights among a population of country
- Confirmatory. Are the results statistically significant?

Three aspects of statistics

- Descriptive. Mean or median grade at a university. Distribution of heights among a population of country
- Confirmatory. Are the results statistically significant?
- Predictive. Learn from past data to predict future events

Three aspects of statistics

- Descriptive. Mean or median grade at a university. Distribution of heights among a population of country
- Confirmatory. Are the results statistically significant?
- Predictive. Learn from past data to predict future events

Another dimension: Frequentist vs Bayesian (philosophical underpinnings)

Experiments and Sample Spaces

- Consider an experiment or process

Experiments and Sample Spaces

- Consider an experiment or process
- Set of possible basic outcomes: sample space Ω
- Coin toss:

Experiments and Sample Spaces

- Consider an experiment or process
- Set of possible basic outcomes: sample space Ω
- Coin toss: $\Omega=\{H, T\}$.
- Dice:

Experiments and Sample Spaces

- Consider an experiment or process
- Set of possible basic outcomes: sample space Ω
- Coin toss: $\Omega=\{H, T\}$.
- Dice: $\Omega=\{1,2,3,4,5,6\}$
- Yes/no poll, correct/incorrect:

Experiments and Sample Spaces

- Consider an experiment or process
- Set of possible basic outcomes: sample space Ω
- Coin toss: $\Omega=\{H, T\}$.
- Dice: $\Omega=\{1,2,3,4,5,6\}$
- Yes/no poll, correct/incorrect: $\Omega=\{0,1\}$
- Number of traffic accidents in an area per year:

Experiments and Sample Spaces

- Consider an experiment or process
- Set of possible basic outcomes: sample space Ω
- Coin toss: $\Omega=\{H, T\}$.
- Dice: $\Omega=\{1,2,3,4,5,6\}$
- Yes/no poll, correct/incorrect: $\Omega=\{0,1\}$
- Number of traffic accidents in an area per year: $\Omega=\mathbb{N}$
- Misspelling of a word.

Experiments and Sample Spaces

- Consider an experiment or process
- Set of possible basic outcomes: sample space Ω
- Coin toss: $\Omega=\{H, T\}$.
- Dice: $\Omega=\{1,2,3,4,5,6\}$
- Yes/no poll, correct/incorrect: $\Omega=\{0,1\}$
- Number of traffic accidents in an area per year: $\Omega=\mathbb{N}$
- Misspelling of a word. $\Omega=Z *$ where Z is an alphabet, and $Z *$ the set of strings over this alphabet
- Guess a missing word:

Experiments and Sample Spaces

- Consider an experiment or process
- Set of possible basic outcomes: sample space Ω
- Coin toss: $\Omega=\{H, T\}$.
- Dice: $\Omega=\{1,2,3,4,5,6\}$
- Yes/no poll, correct/incorrect: $\Omega=\{0,1\}$
- Number of traffic accidents in an area per year: $\Omega=\mathbb{N}$
- Misspelling of a word. $\Omega=Z *$ where Z is an alphabet, and $Z *$ the set of strings over this alphabet
- Guess a missing word: $|\Omega|=$ vocabulary size

Events

- An event A is a set of basic outcomes. Event A takes place if the outcome of the experiment $\in A$
- $A \subseteq \Omega$, and any $A \in 2^{\Omega}$ (all subsets of Ω).
- Ω

Events

- An event A is a set of basic outcomes. Event A takes place if the outcome of the experiment $\in A$
- $A \subseteq \Omega$, and any $A \in 2^{\Omega}$ (all subsets of Ω).
- Ω is the certain event
- \emptyset

Events

- An event A is a set of basic outcomes. Event A takes place if the outcome of the experiment $\in A$
- $A \subseteq \Omega$, and any $A \in 2^{\Omega}$ (all subsets of Ω).
- Ω is the certain event
- \emptyset is the impossible event
- Experiment, toss 3 coins

Events

- An event A is a set of basic outcomes. Event A takes place if the outcome of the experiment $\in A$
- $A \subseteq \Omega$, and any $A \in 2^{\Omega}$ (all subsets of Ω).
- Ω is the certain event
- \emptyset is the impossible event
- Experiment, toss 3 coins
- $\Omega=$

Events

- An event A is a set of basic outcomes. Event A takes place if the outcome of the experiment $\in A$
- $A \subseteq \Omega$, and any $A \in 2^{\Omega}$ (all subsets of Ω).
- Ω is the certain event
- \emptyset is the impossible event
- Experiment, toss 3 coins
- $\Omega=$
$\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$
- Event A : there were exactly two tails.

Events

- An event A is a set of basic outcomes. Event A takes place if the outcome of the experiment $\in A$
- $A \subseteq \Omega$, and any $A \in 2^{\Omega}$ (all subsets of Ω).
- Ω is the certain event
- \emptyset is the impossible event
- Experiment, toss 3 coins
- $\Omega=$
$\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$
- Event A : there were exactly two tails.

$$
\star A=\{H T T, T H T, T T H\}
$$

- Event B : there were three heads.

Events

- An event A is a set of basic outcomes. Event A takes place if the outcome of the experiment $\in A$
- $A \subseteq \Omega$, and any $A \in 2^{\Omega}$ (all subsets of Ω).
- Ω is the certain event
- \emptyset is the impossible event
- Experiment, toss 3 coins
- $\Omega=$
$\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$
- Event A : there were exactly two tails.

$$
\star A=\{H T T, T H T, T T H\}
$$

- Event B : there were three heads.

$$
\star B=\{H H H\}
$$

Events and probability

- $P($ Germany wins the game|no rain $)=0.9$

Events and probability

- $P($ Germany wins the game|no rain $)=0.9$
- Past performance. Germany won 90% of games with no rain

Events and probability

- $P($ Germany wins the game|no rain $)=0.9$
- Past performance. Germany won 90% of games with no rain
- Hypothetical performance. If they played the game in many parallel universes

Events and probability

- $P($ Germany wins the game|no rain $)=0.9$
- Past performance. Germany won 90% of games with no rain
- Hypothetical performance. If they played the game in many parallel universes
- Subjective strength of belief. Would bet up to 90 cents for a chance to win 1 euro.

Events and probability

- $P($ Germany wins the game|no rain $)=0.9$
- Past performance. Germany won 90% of games with no rain
- Hypothetical performance. If they played the game in many parallel universes
- Subjective strength of belief. Would bet up to 90 cents for a chance to win 1 euro.
- Output of some computable formula

Probability notation

$P($ Germany wins the game Event A
 no rain
 Event B

- Given that event B happens, how likely is event A ?
- Germany wins the game is a predicate which selects the outcomes that are members of event A

Frequentist probability

- For series i
- Repeat experiment many times
- Record how many times event A occured: $\operatorname{count}_{i}(A)$
- The ratios $\frac{\operatorname{count}_{i}(A)}{T_{i}}$, where T_{i} is the number of experiments in series i, are close to some unknown but constant value
- We can call this constant $P(A)$

Estimating probabilities

- The constant $P(A)$ is unknown, but we can estimate it:
- From a single series $i: P(A)=\frac{\operatorname{count}_{i} A}{T_{i}}$ (the common case)
- Or take the weighted average of all series i

Example

- Toss three coins.
- $\Omega=$ $\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$
- A: there were exactly three tails
- $A=\{H T T, T H T, T T H\}$
- Run 1000 times
- Got one of HTT, THT, TTH 386 times out of 1000
- $\hat{P}(A)=0.386$
- Run several times: 373, 399, 355, 372, 406, 359
- $\hat{P}(A)=0.379$
- If each outcome in Ω is equally likely $P(A)=3 / 8=0.375$

P as a function of sets of outcomes

$P($ Germany wins|no rain $)=\frac{P(\text { Germany wins, no rain })}{P(\text { no rain })}$

P as a function of sets of outcomes

$$
\begin{aligned}
& P(A \mid B)=\mathrm{P}(\mathrm{~A}, \mathrm{~B} \quad) / \mathrm{P}(\mathrm{~B}) \\
& \text { notation } \\
& \text { predicate }
\end{aligned}
$$

Axioms of probability

- $P(\emptyset)=$

Axioms of probability

- $P(\emptyset)=0$
- $P(\Omega)=$

Axioms of probability

- $P(\emptyset)=0$
- $P(\Omega)=1$
- $P(A) \leq P(B)$ for any $A \subseteq B$

Axioms of probability

- $P(\emptyset)=0$
- $P(\Omega)=1$
- $P(A) \leq P(B)$ for any $A \subseteq B$
- $P(A)+P(B)=P(A \cup B)$ provided

Axioms of probability

- $P(\emptyset)=0$
- $P(\Omega)=1$
- $P(A) \leq P(B)$ for any $A \subseteq B$
- $P(A)+P(B)=P(A \cup B)$ provided $A \cap B=\emptyset$

Joint and conditional probability

- Joint probability and the meaning of commas
- $P(A, B)=P(A \cap B)$
- $P($ Germany wins, no rain $)=P($ Germany wins \wedge no rain $)$

Joint and conditional probability

- Joint probability and the meaning of commas
- $P(A, B)=P(A \cap B)$
- $P($ Germany wins, no rain $)=P($ Germany wins \wedge no rain $)$
- $P(A \mid B)=P(A, B) / P(B)$
- Estimate from counts

$$
\begin{align*}
P(A \mid B) & =\frac{P(A, B)}{P(B)} \tag{1}\\
& =\frac{\operatorname{count}(A \cap B) / T}{\operatorname{count}(B) / T} \tag{2}\\
& =\frac{\operatorname{count}(A \cap B)}{\operatorname{count}(B)} \tag{3}
\end{align*}
$$

Chain rule

- $P(A \mid B)=\frac{P(A, B)}{P(B)}$
- Therefore $P(A, B)=P(A \mid B) P(B)$

Chain rule

- $P(A \mid B)=\frac{P(A, B)}{P(B)}$
- Therefore $P(A, B)=P(A \mid B) P(B)$
- Generalization:

$$
P\left(A_{1}, A_{2}, \ldots, A_{n}\right)
$$

$$
\begin{aligned}
& =P\left(A_{1} \mid A_{2}, \ldots, A_{n}\right) P\left(A_{2}, \ldots, A_{n}\right) \\
& =P\left(A_{1} \mid A_{2}, \ldots, A_{n}\right) P\left(A_{2} \mid A_{3}, \ldots, A_{n}\right) P\left(A_{3}, \ldots, A_{n}\right)
\end{aligned}
$$

$$
=\prod_{i=1}^{n} P\left(A_{i} \mid A_{i+1}, \ldots, A_{n}\right)
$$

Independence

- Two events A and B are independent if $P(A, B)=P(A) P(B)$

Independence

- Two events A and B are independent if $P(A, B)=P(A) P(B)$
- For independent A, B, does $P(A \mid B)=P(A)$ hold?

Independence

- Two events A and B are independent if

$$
P(A, B)=P(A) P(B)
$$

- For independent A, B, does $P(A \mid B)=P(A)$ hold?
- A and B are conditionally independent if $P(A, B \mid C)=P(A \mid C) P(B \mid C)$

There are two urns:

There are two urns:

- Suppose we pick an urn uniformly at random and then select a random ball from that urn. What is probability that you pick urn A, and take a blue ball from it?

Marginal probability

- Given $P\left(A, B_{i}\right)$ for disjoint events B_{i}, find out $P(A)$.
- Use last axiom

$$
\begin{aligned}
P(A) & =P\left(\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots \cup\left(A \cap B_{n}\right)\right) \\
& =P\left(A \cap B_{1}\right)+P\left(A \cap B_{2}\right)+\cdots+P\left(A \cap B_{n}\right) \\
& =\sum_{i=1}^{n} P\left(A \cap B_{i}\right)
\end{aligned}
$$

- Given the same ball-picking procedure as before, what is the probability of picking the blue ball?

Bayes rule

- $P(A, B)=P(B, A)$ since $A \cap B=B \cap A$
- $P(B, A)=P(B \mid A) P(A)$

Bayes rule

- $P(A, B)=P(B, A)$ since $A \cap B=B \cap A$
- $P(B, A)=P(B \mid A) P(A)$

Therefore

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A, B)}{P(B)} \\
& =\frac{P(B, A)}{P(B)} \\
& =\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Bayes rule

If we are interested in comparing the probability of events A_{1}, A_{2}, \ldots given B, we can ignore $P(B)$ since it's the same for all A_{i}

$$
\begin{aligned}
\underset{i}{\operatorname{argmax}} P\left(A_{i} \mid B\right) & =\underset{i}{\operatorname{argmax}} \frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P(B)} \\
& =\underset{i}{\operatorname{argmax}} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
\end{aligned}
$$

Bayes rule

If we are interested in comparing the probability of events A_{1}, A_{2}, \ldots given B, we can ignore $P(B)$ since it's the same for all A_{i}

$$
\begin{aligned}
\underset{i}{\operatorname{argmax}} P\left(A_{i} \mid B\right) & =\underset{i}{\operatorname{argmax}} \frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P(B)} \\
& =\underset{i}{\operatorname{argmax}} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
\end{aligned}
$$

- This idea is sometimes expressed as

$$
P(A \mid B) \propto P(B \mid A) P(A)
$$

Example

Suppose we are interested in a test to detect a disease which affects one in 100,000 people on average. A lab has developed a test which works but is not perfect.

- If a person has the disease it will give a positive result with probability 0.97
- if they do not, the test will be positive with probability 0.007 .
You took the test, and it gave a positive result. What is the probability that you actually have the disease?

Credits

Some material adapted from:

- Foundations of Statistical NLP
- Intro to NLP slides by Jan Hajic
- How to use probabilities slides by Jason Eisner

