

True, Valid, Satisfiable

- A formula φ is true in a model structure M iff
 [[φ]]^{M,g} = 1 for every variable assignment g
- A formula φ is valid (⊨ φ) iff φ is true in all model structures
- A formula φ is satisfiable iff there is at least one model structure M such that φ is true in M

47

Satisfiable? Valid?

- (1) $\forall x F(x) \rightarrow \exists x F(x)$
- (2) $\exists x \forall y \Phi \rightarrow \forall y \exists x \Phi$
- (3) $\exists x(F(x) \land \neg F(x))$
- (4) $\exists x F(x) \lor \neg F(x)$

Entailment

- A set of formulas Γ is (simultaneously) satisfiable iff there is a model structure M such that every formula in Γ is true in M ("M satisfies Γ," or "M is a model of Γ")
- **Γ** is contradictory if Γ is not satisfiable.
- Γ entails a formula φ (Γ ⊨ φ) iff φ is true in every model structure that satisfies Γ

49

Example [⇒ Blackboard]

- (1) Not every blond student passed
- (2) Not every student passed

50

Some logical laws

Quantifier negation

- ¬∀xφ⇔∃x¬φ
- Quantifier distribution
 - $\forall x(\phi \land \Psi) \Leftrightarrow \forall x \phi \land \forall x \Psi$
 - $\blacksquare \exists x(\phi \lor \Psi) \Leftrightarrow \exists x\phi \lor \exists x\Psi$
- Quantifier (in-)dependence
 - $\forall x \forall y \phi \Leftrightarrow \forall y \forall x \phi$
 - ∃x∃yφ ⇔ ∃y∃xφ
 - $\exists x \forall y \phi \Rightarrow \forall y \exists x \phi$ (but not vice versa)

First-order logic

- Formulas of first-order logic can talk about properties of and relations between individuals.
- Constants and variables denote individuals.
- Quantification is restricted to quantification over individuals.

53

Limits of first-order logic

- First-order logic is not expressive enough to capture the full range of meaning of natural language:
 - Modification ("good student", "former professor")
 - Sentence embedding verbs ("knows that ...")
 - Higer order quantification ("have the same hair color")
 - ...
- First-order logic does not support compositional semantics construction.

Limits of first-order logic

- The principle of compositionality (recap): The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined (cited from Partee &al., 1993)
- Compositional semantics construction:
 - compute meaning representations for sub-expressions.
 - combine them to obtain a meaning representation for a complex expression.
- a man walks $\mapsto \exists x(man'(x) \land walk'(x))$
 - a man +> (?)
 - walks ↦ (?)

55

Type Theory

- a man walks $\mapsto \exists x(man'(x) \land walk'(x))$
 - a man ↦ (?)
 - walks ↦ (?)
- Type theory generalizes first-order predicate logic
 - flexible syntax
 - higher order predicates and variables
 - lambda operator

56

