Interpretation (terms)

- Interpretation of terms with respect to a model structure M and a variable assignment g :
- $\llbracket \alpha \rrbracket^{M, g}= \begin{cases}V_{M}(\alpha) & \text { if } \alpha \text { is an individual constant } \\ g(\alpha) & \text { if } \alpha \text { is a variable }\end{cases}$

Interpretation (atomic formulas)

- Interpretation of (atomic) formulas with respect to a model structure M and variable assignment g :
$\llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{M, g}=1$ iff $\left\langle\llbracket t_{1} \rrbracket^{M, g}, \ldots, \llbracket t_{n} \rrbracket^{M, g}\right\rangle \in V_{M}(R)$
$\llbracket \mathrm{t}_{1}=\mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \mathrm{iff} \llbracket \mathrm{t}_{1} \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{g}}$

Is Vincent a rabbit?

- \llbracket rabbit(vincent) $\rrbracket^{M, 9}=1$
- iff \llbracket vincent $\rrbracket^{M, g} \in V_{M}$ (rabbit)
- iff V_{M} (vincent) $\in \mathrm{V}_{\mathrm{M}}$ (rabbit)

M	$=\left(U_{M}, V_{M}\right)$
U_{M}	$=\left\{r_{1}, r_{2}, h_{1}, h_{2}\right\}$
$\mathrm{V}_{M}($ vincent $)$	$=r_{1}$
$V_{M}($ mia $)$	$=r_{2}$
$V_{M}($ rabbit $)$	$=\left\{r_{1}, r_{2}\right\}$
$V_{M}($ white $)$	$=\left\{r_{2}\right\}$
$V_{M}($ hat $)$	$=\left\{h_{1}, h_{2}\right\}$
$V_{M}($ in $)$	$=\left\{\left(r_{1}, h_{1}\right)\right\}$

Interpretation (connectives)

- Connectives are truth-functional: the truth-value of a complex expession is determined by the truth-values of their subformulas.

$$
\begin{aligned}
& \llbracket \neg \varphi \rrbracket^{M, g}=1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=0 \\
& \llbracket \varphi \wedge \psi \rrbracket^{M, g}=1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=1 \text { and } \llbracket \psi \rrbracket^{M, g}=1 \\
& \llbracket \varphi \vee \psi \rrbracket^{M, g}=1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=1 \text { or } \llbracket \psi \rrbracket^{M, g}=1 \\
& \llbracket \varphi \rightarrow \psi \rrbracket^{M, g}=1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=0 \text { or } \llbracket \psi \rrbracket^{M, g}=1 \\
& \llbracket \varphi \leftrightarrow \psi \rrbracket^{M, g}=1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=\llbracket \psi \rrbracket^{M, g}
\end{aligned}
$$

Truth-functional connectives

- A connective is truth-functional iff the truth value of any compound statement obtained by applying that connective is a function of the individual truth values of the constituent statements that form the compound.

- Truth-functional connectives:

substituting sub-expressions with the same truth-value does not change the truth of the complete expression.

Truth-functional connectives

(1) John bumped his head and he [John] is crying
(2) John bumped his head and it is raining
(3) John is crying
(4) It is raining

- Assume that (3) and (4) have the same truth-value.
- Then (1) and (2) must have the same truth-value
- and is a truth-functional connective

Truth-functional connectives

(1) John is crying because he [John] bumped his head
(2) John is crying because it is raining
(3) John bumped his head
(4) It is raining

- Assume that (3) and (4) have the same truth-value.
- (1) and (2) can have different same truth-values \Rightarrow
- \Rightarrow because is not truth-functional

Is Vincent a white rabbit?

- $\llbracket r a b b i t($ vincent $) \wedge$ white (vincent) $\rrbracket^{M, 9}=1$
- iff $\llbracket r a b b i t(v i n c e n t) \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ and \llbracket white(vincent) $\rrbracket^{M, g}=1$
- iff V_{M} (vincent) $\in \mathrm{V}_{\mathrm{M}}$ (rabbit) and V_{M} (vincent) $\in \mathrm{V}_{\mathrm{M}}$ (white)

```
                                    \(M=\left(U_{M}, V_{M}\right)\)
                                    \(\mathrm{U}_{\mathrm{M}}=\left\{\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{~h}_{1}, \mathrm{~h}_{2}\right\}\)
\(V_{M}(\) vincent \()=r_{1}\)
    \(V_{M}(\) mia \()=r_{2}\)
    \(V_{M}(\) rabbit \()=\left\{r_{1}, r_{2}\right\}\)
    \(V_{M}(\) white \()=\left\{r_{2}\right\}\)
    \(V_{M}(\) hat \()=\left\{h_{1}, h_{2}\right\}\)
        \(\mathrm{V}_{\mathrm{M}}(\mathrm{in})=\left\{\left(\mathrm{r}_{1}, \mathrm{~h}_{1}\right)\right\}\)
```


Interpretation (quantifiers)

- We want:
- $\llbracket \forall x A(x) \rrbracket^{M, g}=1$ iff for every $d \in U_{M}, d \in \llbracket A \rrbracket^{M, g}$
- $\llbracket \exists x A(x) \rrbracket^{M, g}=1$ iff there is a $d \in U_{M}$ such that $d \in \llbracket A \rrbracket^{M, g}$

Interpretation (quantifiers)

- Interpretation of formulas with respect to a model structure M and variable assignment g :
- $\llbracket \exists \times \varphi \rrbracket^{M, g}=1$ iff there is a $d \in U_{M}$ such that $\llbracket \varphi \rrbracket^{M, g[x / d]}=1$
- $\llbracket \forall \times \varphi \rrbracket^{M, g}=1$ iff for all $d \in U_{M}, \llbracket \varphi \rrbracket^{M, g[x / d]}=1$
- $\mathbf{g}[\mathbf{x} / \mathbf{d}]$ is the variable assignment which is identical to g except that it assigns the individual d to variable x.
- $g[x / d](y)= \begin{cases}d & \text { if } x=y \\ g[x / d](y)=g(y) & \text { if } x \neq y\end{cases}$

Variable assignments

$$
g[x / d](y)= \begin{cases}d & \text { if } x=y \\ g[x / d](y)=g(y) & \text { if } x \neq y\end{cases}
$$

	x	y	z	u	\ldots
g	a	b	c	d	\ldots
$g[x / a]$	a	b	c	d	\ldots
$g[y / a]$	a	a	c	d	\ldots
$g[y / g(z)]$	a	c	c	d	\ldots
$g[y / a][u / a]$	a	a	c	a	\ldots
$g[y / a][y / b]$	a	b	c	d	\ldots

Predicate Logic: Semantics

- Interpretation of formulas with respect to a model structure M and variable assignment g:

$$
\begin{aligned}
\llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{M, g} & =1 \text { iff }\left\langle\llbracket t_{1} \rrbracket^{M, g}, \ldots, \llbracket t_{n} \rrbracket^{M, g}\right\rangle \in V_{M}(R) \\
\llbracket t_{1}=t_{2} \rrbracket^{M, g} & =1 \text { iff } \llbracket t_{1} \rrbracket^{M, g}=\llbracket t_{2} \rrbracket^{M, g} \\
\llbracket \neg \varphi \rrbracket^{M, g} & =1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=0 \\
\llbracket \varphi \wedge \psi \rrbracket^{M, g} & =1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=1 \text { and } \llbracket \psi \rrbracket^{M, g}=1 \\
\llbracket \varphi \vee \psi \rrbracket^{M, g} & =1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=1 \text { or } \llbracket \psi \rrbracket^{M, g}=1 \\
\llbracket \varphi \rightarrow \psi \rrbracket^{M, g} & =1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=0 \text { or } \llbracket \psi \rrbracket^{M, g}=1 \\
\llbracket \varphi \leftrightarrow \psi \rrbracket^{M, g} & =1 \text { iff } \llbracket \varphi \rrbracket^{M, g}=\llbracket \psi \rrbracket^{M, g} \\
\llbracket \exists x \varphi \rrbracket^{M, g} & =1 \text { iff there is a } d \in U_{M} \text { such that } \llbracket \varphi \rrbracket^{M, g[x / d]}=1 \\
\llbracket \forall x \varphi \rrbracket^{M, g} & =1 \text { iff for all } d \in U_{M}, \llbracket \varphi \rrbracket^{M, g[x / d]}=1
\end{aligned}
$$

Every rabbit is in a hat

- $\llbracket \forall x\left(\operatorname{rabbit}(x) \rightarrow \exists y(\operatorname{hat}(y) \wedge \mathrm{in}(x, y)) \rrbracket^{M, g}=1\right.$
- iff ... [\Rightarrow whiteboard]

Not every rabbit is white

- $\llbracket \neg \forall x(\operatorname{rabbit}(x) \rightarrow$ white $(x)) \rrbracket^{M, g}=1$
- iff ... [\Rightarrow whiteboard]

$$
\begin{aligned}
M & =\left(U_{M}, V_{M}\right) \\
U_{M} & =\left\{r_{1}, r_{2}, h_{1}, h_{2}\right\} \\
\mathrm{V}_{M}(\text { vincent }) & =r_{1} \\
\mathrm{~V}_{M}(\text { mia }) & =r_{2} \\
\mathrm{~V}_{M}(\text { rabbit }) & =\left\{r_{1}, r_{2}\right\} \\
\mathrm{V}_{M}(\text { white }) & =\left\{r_{2}\right\} \\
\mathrm{V}_{M}(\text { hat }) & =\left\{\mathrm{h}_{1}, h_{2}\right\} \\
\mathrm{V}_{M}(\text { in }) & =\left\{\left(\mathrm{r}_{1}, \mathrm{~h}_{1}\right)\right\}
\end{aligned}
$$

More Examples

■ $\llbracket \exists x(\forall x A(x) \wedge B(x)) \rrbracket^{M, g}=1$ iff...
■ $\llbracket \forall x A(x) \wedge B(x) \rrbracket^{M, g}=1$ iff \ldots

- $\llbracket \exists x \forall y \mathrm{~L}(\mathrm{x}, \mathrm{y}) \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ iff \ldots
- $\llbracket \forall y \exists x L(x, y) \rrbracket^{M, g}=1$ iff \ldots

