Computational Linguistics Prep Course **Predicate Logic**

Stefan Thater Universität des Saarlandes FR 4.7 Allgemeine Linguistik

Winter semester 2011/12

Outline

- Motivation: Natural language semantics
- First-order predicate logic
 - formal syntax
 - formal semantics
 - truth, validity, ...
- Formalizing natural language expressions

2

Semantic Theory

A semantic theory should, amongst others, ...

- provide adequate semantic representations that "capture" the meaning of natural language expressions
- provide mechanisms to compute semantic representations in a systematic way
- explain semantic relations between natural language sentences (equivalence, entailments, ...)

<section-header><section-header><section-header><section-header><list-item><list-item><section-header><section-header>

Some Phenomena

Entailment: $(1) \models (2)$

- (1) A blond student passed
- (2) A student passed

But: (3) ⊭ (4)

- (3) Every blond student passed
- (4) Every student passed

Some Phenomena

Entailment: (1), (2) \models (3)

- (1) John is a blond student
- (2) John is a tennis-player
- (3) John is a blond tennis-player

But: (4), (5) ⊭ (6)

- (4) John is a good student
- (5) John is a tennis-player
- (6) John is a good tennis-player

5

Semantics vs. Pragmatics

- We are mainly interested in the literal meaning of natural language expressions
- Although (1) somehow "suggests" (2), the entailment relation does not hold between the two sentences:
 - (1) John used to smoke 20 cigarettes a day few years ago
 - (2) John does not smoke 20 cigarettes a day anymore

8

Sense & Reference

Meaning is composed of sense and reference

- **Reference** = the object being referred to
- **Sense** = something that determines the reference
- An Example: "rabbit"
- The reference is the set of rabbits
- The sense allows you to tell rabbits apart from non-rabits

Sentence Meaning

Referent of a sentence = truth value

- Some limitiations: questions, imperatives, performatives, "this statement is false"
- ⇒ we focus on declarative sentences

Sense of a sentence = conditions on truth

 To know the truth-conditions of a sentence is to know what the world has to be like for the sentence to be true.

10

Natural and formal languages

"There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians; indeed, I consider it possible to comprehend the syntax and semantics of both kinds of languages within a single natural and mathematically precise theory."

Richard Montague (1970)

Direct vs. indirect interpretation

Indirect interpretation:

- Translate sentences into some appropriate logical representation language
- Interpret logical formulae

Direct interpretation:

 Interpret sentences directly (like a logical language)

Entailment

Entailment is a relation between sentences

 Strictily speaking: a relation between sentence meanings, i.e. the propositions expressed by the sentences

A sentence **A entails** a sentence **B** ($A \models B$) iff whenever A is true, then B must also be true.

14

Textbooks

- L.T.F. Gamut. Logic, Language and Meaning. Volume I: Introduction to Logic, University of Chicago Press, 1991.
- Barbara H. Partee, Alice ter Meulen, Robert E. Wall. Mathematical Methods in Linguistics. Springer, 1990.

16

Predicate Logic

Predicate Logic

- Propositional logic talks about propositions (statements)
 - propositions have no internal structure (except connectives)
- Predicate logic decomposes simple statements into smaller parts:
 - predicates
 - terms
 - quantifiers

- (2) John loves Mary→ love'(j, m)
- (3) Everybody works $\mapsto \forall x \text{ work}'(x)$
- (4) Somebody works⇒ ∃x work'(x)

Predicate Logic - Syntax

- Terms: TERM = VAR ∪ CON
- Atomic formulas:
 - $R(t_1,...,t_n)$ for $R \in PRED^n$ and $t_1, ..., t_n \in TERM$
 - $t_1 = t_2$ for $t_1, t_2 \in TERM$
- Well-formed formulas: the smallest set WFF such that
 - all atomic formulas are WFF
 - if ϕ and ψ are WFF, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are WFF
 - if $x \in VAR$, and φ is a WFF, then $\forall x \varphi$ and $\exists x \varphi$ are WFF

20

19

Quantification

Зх(...)

• "there is an x such that ..."

∀x(...)

"for every x it is the case that ..."

Exercise - Translate into PL

- (1) Mary loves a student
 → ∃x(student'(x) ∧ love'(m, x))
- (2) Every student works
 - $\mapsto \ \forall x \ (student'(x) \rightarrow work'(x))$
- (3) Nobody flunked $\mapsto \neg \exists x flunk'(x)$
- (4) Barking dogs don't bite
 → ∀x ((dog'(x) ∧ bark'(x)) → ¬bite'(x))

23

Scope

- If ∀xφ (∃xφ) is a subformula of a formula ψ, then φ is the scope of this occurrence of ∀x (∃x) in ψ.
- We distinguish distinct occurrences of quantifiers as there are formulae like \(\forall x A(x) \(\Lambda \) \(\forall x B(x)).\)
- Examples:
 - $\exists x \left[(\forall y \left[(T(y) \leftrightarrow x = y) \right] \land F(x)) \right]$
 - Ax A(x) v Ax B(x)

Free and Bound Variables

- An occurrence of a variable x in a formula φ is free in φ if this occurrence of x does not fall within the scope of a quantifier ∀x or ∃x in φ.
- If ∀xψ (∃xψ) is a subformula of φ and x is free in ψ, then this occurrence of x is **bound by** this occurrence of the quantifier ∀x (∃x).
- Examples:
 - $\forall x(A(x) \land B(x)) x \text{ occurs bound in } B(x)$
 - $\forall x A(x) \land B(x) x$ occurs free in B(x)
- A sentence is a formula without free variables.

25

Predicate Logic - Semantics

- Expressions of Predicate Logic are interpreted relative to model structures and variable assignments.
- Model structures are our "mathematical picture" of the world. They provide interpretations for the non-logical symbols (predicate symbols, individual constants).
- Variable assignments provide interpretations for variables.

26

Model structures

- Model structure: $M = \langle U_M, V_M \rangle$
 - U_M is non-empty set the "universe"
 - V_M is an interpretation function assigning individuals (∈U_M) to individual constants and n-ary relations over U_M to nplace predicate symbols:
 - $V_M(P) \subseteq U_M^n$ if P is an n-place predicate symbol
 - $V_M(c) \in U_M$ if c is an individual constant
- Assignment function for variables g: VAR \rightarrow U_M

