
Statistical Estimators
MSc Prep Course 2011

Liling, Noushin, Sevtap, Wei

Today’s Menu

• N-grams

• Maximum Likelihood Estimators

• Laplace’s Law, Lidstone’s Law, Jeffreys-Perks Law

• Held out Estimation

• Cross Validation

• Good-Turing Estimation

Maximum Likelihood Estimation

What is an N-gram?

• Question: Please turn your homework ...

• what is the most likely word to finish this
sentence?

• what is an unlikely word to finish this
sentence?

N-gram

• informally, a way to model that human
intuition

• formally, word prediction with a
probabilistic model

N-gram

• Question: why is it called N-gram?

• Predicts the last word from the previous
N-1 words.

N-gram

• 1-gram: 1-token sequence of words

• 2-gram: 2-token sequence of words

• 3-gram: 3-token sequence of words

• ...

• N-gram: N-token sequence of words

N-gram

• Exercise: List some of the 1-grams, 2-
grams, 11-grams in the following text

• Bir varmis bir yokmus. Evvel zaman icinde
kalbur zaman icinde.

N-gram

• Q: Why does N-gram prediction work?

• It turns out, computing the probability of
the next word is closely related to
computing the probability of a sequence of
words

N-gram

• Q: Which sentence is more likely to appear
in a text

• 1. ...all of a sudden I notice three guys
standing on the sidewalk...

• 2. ...on guys all I notice sidewalk three
sudden standing the...

N-gram

• N-gram is an N-token sequence of words

• Can also mean, the model which uses N-
grams to predict the next word or an
entire sequence of N words.

N-gram

• An important tool in speech and language
processing

• Handwriting recognition

• P(“I have a gun”) >> P(“I have a gub”)

• Machine translation

• P(“briefed reporters”) >> P(“briefed to
reporters”)

N-gram

• Spelling correction

• P(“in about fifteen minutes”) >> P(“in
about fifteen minuets”)

• Augmentative communication

• P(“in” | ”turn your homework”) >>
P(“the” | ”turn your homework”)

N-gram (estimating the
next word)

• P(w|h) read as probability of a word w
given some history h

• Ex: P(the | its water is so transparent that)

• Q: How can we compute this probability?

N-gram (estimating the
next word)

• One way of computing it:

• estimate it from the relative frequency
counts.

• but how?

N-gram (estimating the
next word)

• Step 1: take a large corpus

• and he saw the lake its water is so
transparent that he and its water is so
transparent that she ... and its water is so
transparent that the ...

N-gram (estimating the
next word)

• Step 2: count the number of times “its
water is so transparent that” occurs in the
corpus, call this number count1

• Step 3: count the number of times “its
water is so transparent that the” occurs in
the corpus, call this number count2

• Step 4: Divide count2 by count1

N-gram (estimating the
next word)

• P(the | its water is so transparent that) =
Count(its water is so transparent that
the) / Count(its water is so transparent
that)

• works fine in many cases

• not enough data to make it work in most
cases.

N-gram (estimating the
sequence of words)

• What about P(its water is so transparent)?

• Looks like a joint probability of entire
sequence of words

• Q: How can we compute this probability?

N-gram (estimating the
sequence of words)

• One way of computing it:

• estimate it from the relative frequency
counts.

• but how?

N-gram (estimating the
sequence of words)

• Step 1: take a large corpus

• ... and he went there to fetch some ... its
water is so transparent ... again said he its
water is so transparent as to ...

N-gram (estimating the
sequence of words)

• Step 2: count the number of times “its
water is so transparent” occurs in the
corpus, call this number count1

• Step 3: count the number of all 5-grams in
the corpus, call this number count2

• Step 4: Divide count1 by count2

N-gram(estimation)

• We did a lot of counting

• Q: Isn’t there a cleverer way of estimating
the probabilities for the next word and for
the entire sequence of words?

N-gram (some
notation)

• P(X1=”the”) read as probability of random
variable X1 taking the value “the” aka P(the)

• w1 ...wn see as sequence of n words

• P(X=w1, Y=w2, Z=w3, ..., W=wn) see as the
joint probability of each word in a sequence
having a particular value, aka P(w1, w2, ...,wn)

Computing P(w1, w2, ..., wn)

• Q: How can we compute the probabilities
of entire sequences of words?

• In other words, how can we compute P(w1,
w2, ..., wn)

• Ex: P(its, water, is, so, transparent)

Compt. P(w1, w2, ..., wn)

• One way of computing this probability is to
use the chain rule

• P(w1, w2, ..., wn) = P(w1) P(w2|w1) P(w3|
w1w2) ... P(wn|w1w2...wn-1)

• This formula shows the link between
computing the joint probability of a
sequence and computing the conditional
probability of a word given previous words

Compt. P(w1, w2, ..., wn)

• P(it is raining outside) = P(it) P(is|it)
P(raining|it is) P(outside|it is raining)

• The red terms are conditional probabilities
and yet for long sequences of words, we
don’t know a way to compute them :(

Compt. P(wn|w1w2...wn-1)

• Q: Can’t we use the relative frequency to
compute that?

• NO

• that means doing

• Count(every word followed by every
long string)

• Count(every long string)

Compt. P(wn|w1w2...wn-1) using
N-gram model

• Instead of computing the probability of a
word given its entire history, we can
approximate the history by just the last few
words.

• Q: Can we do this?

• Yes, if we assume that Markov is right.

Compt. P(wn|w1w2...wn-1) using
N-gram model

• Q: What did Markov say?

• The probability of a word depends only on
the previous word.

• So P(outside|it is raining) is approximately
same as P(outside|raining)

Compt. P(wn|w1w2...wn-1) using
N-gram model

• A 2-gram model approximates the
conditional probability P(w|h) by just
looking one word into the past

• A 3-gram model does that with two words

• An N-gram model does that with N-1
words

Compt. P(wn|w1w2...wn-1) N-
gram approximation

• P(wn|w1w2...wn-1) =approx P(wn|wn-N+1...wn-1)

• N=1: P(wn|w1...wn-1) =approx P(wn)

• N=2: P(wn|w1...wn-1) =approx P(wn| wn-1)

• N=3: P(wn|w1...wn-1) =approx P(wn|wn-2 wn-1)

• The term in red is called the N-gram
probability

Computing N-gram probability

• Good that we have an approximation

• Q: how can we estimate an N-gram
probability?

• A: the simplest and the most intuitive way
is to use Maximum Likelihood Estimation
(MLE)

Computing N-gram probability

• To estimate the value of P(wn|w1w2...wn-N+1)
use counts from a corpus and normalize
them.

• Normalize: divide a count by some total
count so that resulting probabilities fall
legally between 0 and 1.

Computing N-gram probability

• Ex: to compute a particular 2-gram
probability P(y|x)

• 1. Count how many times this 2-gram
occurs in the corpus. Count(xy). count1

• 2. Count all the 2-grams that share the
same first word x. Count(x_). count2

• 3. Normalize by dividing count1 by count2

Computing N-gram probability

• P(wn|w1...wn-1) = Count(wn-N+1...wn) /
Count(wn-N+1...wn-1)

• Example in the Speech and Language
Processing book, page 123

Computing N-gram probability

• We estimate the N-gram probability by
dividing the observed frequency of a
particular sequence by the observed
frequency of a prefix

• This ratio is called relative frequency

Computing N-gram probability

• The use of relative frequencies as a way to
estimate probabilities is an example of MLE

• In MLE, the resulting parameter set
maximizes the likelihood of the training set
T given the model M. P(T|M)

Computing N-gram probability

• Example in the Speech and Language
Processing book, page 125

References

• Jurafsky, Daniel, and James H. Martin. 2009.
Speech and Language Processing: An
Introduction to Natural Language
Processing, Speech Recognition, and
Computational Linguistics. 2nd edition.
Prentice-Hall.

Laplace’s Law, Lidstone’s Law, Jeffreys-Perks Law

Outline

• Motivation: why MLE doesn’t work well?
• Laplace’s Law
• Lidstone’s Law
• Jeffreys-perks Law

Why MLE fails

• Maximize the probability of observed data:
assign 0 to unobserved data.
– Can we enlarge the corpus to avoid this?

• To some extent… Google 5-gram corpus
• According to Zipfs’ law:

– we’ll always have rare words not matter how large
the corpora. (Zipf's law states that given some
corpus of natural language utterances, the
frequency of any word is inversely proportional to
its rank in the frequency table.)

– Vocabulary= 20,000, then possible bigrams =
20,000*20,000

Zipfs law

 Empirical evaluation of Zipf's law on Tom Sawyer.

 -- foundations of statistical NLP P24

Example

– Corpus: five Jane Austen novels

– N = 617,091 words

– V = 14,585 unique words

– Task: predict the next word of the trigram “inferior
to ________”
• from test data, Persuasion: “[In person, she was]

inferior to both [sisters.]”

Instances in the Training Corpus:
“inferior to ________”

Maximum Likelihood Estimate:

Actual Probability Distribution:

LaPlace’s Law

Laplace’s Law(adding one)

Exercise

MLE: 𝑃 𝑤 …𝑤 = (…)

Laplace: 𝑃 𝑤 …𝑤 = ?

Exercise

MLE: 𝑃 𝑤 …𝑤 = (…)

Laplace: 𝑃 𝑤 …𝑤 = …

Problem of LaPlace’s Law

Lidstone’s Law

• We are adding too much!
• Not add one! But add λ!
• Exercise: 𝑃 𝑤 …𝑤 = ?

Lidstone’s Law

• We are adding too much!
• Not add one! But add λ!

• Exercise: 𝑃 𝑤 …𝑤 = …

summarization

• 𝑃 𝑤 …𝑤 = …

– P = probability of specific n-gram
– C = count of that n-gram in training data
– N = total n-grams in training data
– B = number of “bins” (possible n-grams)
– = small positive number

• MLE: = 0
LaPlace’s Law: = 1
Jeffreys-Perks Law: = ½

Objections to Lidstone’s law

• Need an a priori way to determine .
• Predicts all unseen events to be equally likely
• Gives probability estimates linear in the MLE.

Frequency

– Assume 𝜇 =

– Then 𝑃 = 𝜇 (…) + (1 − 𝜇)

Held out Estimation
Cross Validation

“In Chinese Kungfu Culture, the master always keep the
last stance from his student”
– saddnesz.blogspot.com

“In computational linguistics, the master student always
keeps a part of the data from the machine learning”
– lilinguistics

In statistical NLP, our data is split into the training data
and the held-out data, the purpose is to compare the
probabilities that we get from the 2 different portions to
get an estimate.

• You are not assuming a prior weight unlike the λ

addition in Laplace and Lidstone smoothening.
(Mathematicians! Only trust them if they convince you with the hieroglyphs they are
drawing in their formula)

• You are saving your time and effort in getting
comparable corpora to compare N-grams (but it’s a common
fallacy that corpus linguists do, I admit I did the same)

• You are using data from the same source to estimate
probabilities of N-grams

Zo, here comes the math:

Jibberish?? Obviously this is soooo Greek, sometimes even the
people from Greece today don’t understand it.

Imagine we have an ABCorpus that is made up of the letters ‘A’, ‘B’
and ‘C’. So we have vocabABCorpus = {A,B,C} and the ABCorpus looks
like this:

|-------------------Training --------------------|-----------Held-Out------|
 A B C A B B C C A C B C A A C B C C B C C B C C B A A C B C A B

Training Data: T = {A B C A B B C C A C B C A A C B C C B C}

Held Out Data: HO = {C B C C B A A C B C A B}

Fistly, from the training data, we list out all the possible 3-grams and group them into how
many times they occur (in our data, T = 11):

r = no. of times the 3-grams appears in training data
ClassT(r) = possible 3-grams given vocabulary of the corpus
SizeClassT(Nr) = no. of items the ‘set’ of Class(r) 3-grams appear in the training data
SizeClassHO(Tr) = no. of times the ‘set’ of Class(r) 3-grams appear in the held-out data
T = no. of possible 3-grams in the held-out data
PHO = Tr / (Nr*T)

r Members of ClassT (r) Count of
ClassT(Nr)

Count of
ClassHO (Tr)

PHO

3 {CBC}
2 {BCA, BCC, ACB}
1 {AAC, ABB, ABC, BBC,

CAA, CAB, CAC, CCA,
CCB}

0 {AAA, AAB, ABA, ACA,
ACC, BAA, BAB, BAC,
BBA, BBB, BCB, CBA,
CBB, CCC}

Fistly, from the training data, we list out all the possible 3-grams and group them into how
many times they occur (in our data, T = 11):

r = no. of times the 3-grams appears in training data
ClassT(r) = possible 3-grams given vocabulary of the corpus
SizeClassT(Nr) = no. of items the ‘set’ of Class(r) 3-grams appear in the training data
SizeClassHO(Tr) = no. of times the ‘set’ of Class(r) 3-grams appear in the held-out data
T = no. of possible 3-grams in the held-out data
PHO = Tr / (Nr*T)

r Members of ClassT (r) Count of
ClassT(Nr)

Count of
ClassHO (Tr)

PHO

3 {CBC} 1 2 .18
2 {BCA, BCC, ACB} 3 3 .091
1 {AAC, ABB, ABC, BBC,

CAA, CAB, CAC, CCA,
CCB}

0 {AAA, AAB, ABA, ACA,
ACC, BAA, BAB, BAC,
BBA, BBB, BCB, CBA,
CBB, CCC}

Fistly, from the training data, we list out all the possible 3-grams and group them into how
many times they occur (in our data, T = 11):

r = no. of times the 3-grams appears in training data
ClassT(r) = possible 3-grams given vocabulary of the corpus
SizeClassT(Nr) = no. of items the ‘set’ of Class(r) 3-grams appear in the training data
SizeClassHO(Tr) = no. of times the ‘set’ of Class(r) 3-grams appear in the held-out data
T = no. of possible 3-grams in the held-out data
PHO = Tr / (Nr*T)

r Members of ClassT (r) Count of
ClassT(Nr)

Count of
ClassHO (Tr)

PHO

3 {CBC} 1 2 .18
2 {BCA, BCC, ACB} 3 3 .091
1 {AAC, ABB, ABC, BBC,

CAA, CAB, CAC, CCA,
CCB}

9 3 .03

0 {AAA, AAB, ABA, ACA,
ACC, BAA, BAB, BAC,
BBA, BBB, BCB, CBA,
CBB, CCC}

14 3 .019

r Members of ClassT (r) Count of
ClassT(Nr)

Count of
ClassHO (Tr)

PHO

3 {CBC} 1 2 .18
2 {BCA, BCC, ACB} 3 3 .091
1 {AAC, ABB, …, CCB} 9 3 .03
0 {AAA, AAB, …, CCC} 14 3 .019

r Members of ClassT (r) Count of
ClassT(Nr)

Count of
ClassHO (Tr)

PHO

3 {CBC} 1 2 .18
2 {BCA, BCC, ACB} 3 3 .09
1 {AAC, ABB, …, CCB} 9 3 .03

0 {AAA, AAB, …, CCC} 14 3 .019

|-------------------Training --------------------|-----------Held-Out-------|
 A B C A B B C C A C B C A A C B C C B C C B C C B A A C B C A B (3)

r Members of ClassT (r) Count of
ClassT(Nr)

Count of
ClassHO (Tr)

PHO

3 {CBC} 1 2 .18
2 {BCA, BCC, ACB} 3 3 .091
1 {AAC, ABB, ABC, BBC,

CAA, CAB, CAC, CCA,
CCB}

9 3 .03

0 {AAA, AAB, ABA, ACA,
ACC, BAA, BAB, BAC,
BBA, BBB, BCB, CBA,
CBB, CCC}

14 3 .019

Fistly, from the training data, we list out all the possible 3-grams and group them into how
many times they occur (in our data, T = 11):

Why doesn’t this sum up to 1????

r Members of ClassT (r) Count of
ClassT(Nr)

Count of
ClassHO (Tr)

PHO

3 {CBC} 1 2 .18 .18*1 = .18
2 {BCA, BCC, ACB} 3 3 .091 .09*3 = .27
1 {AAC, ABB, ..., CCB} 9 3 .030 .03*9 = .27

0 {AAA, AAB, ABA, ACA,
ACC, BAA, …, CCC}

14 3 .019 .019*14=.27
2727272727

Fistly, from the training data, we list out all the possible 3-grams and group them into how
many times they occur (in our data, T = 11):

Because this adds to 1!!!!

ClassT(r), using the training data we are listing the different variations of the 3-
grams and ranking them by how often they occurred in current text

Nr , we count the no. of times 3-grams appears in ‘seen’ text according to the
ranks

Tr , we count the no. of times 3-grams appears in ‘unseen’ text according to the
ranks

PHO , we calculate the estimated probability of 3-grams will appear in general
according to their ranks

This is the REAL Phở
>>>>>>>>>>>>>>>

• Test data, a CARDINAL SIN in Stats NLP is to test on your training data.
• Honestly, if you think that that will give you 100% precision, it won't. More often

there are bugs in our systems that even if you train and test on the same data it
doesn't give you 100%. (From experience)

• Overtraining, models (i.e. in our case N-grams like events) tends to expect

future events to be like the seen events
• Language in general shouldn’t work that way, in Singlish there are phrases like 'Act

Blur' (POS tagging) 'act as....', 'act like he is ...', 'act as ...’ However statistically, it does
if you make sure that your training data does cover an optimal amoun of
patterns/parameters.

• So predictive natured Stats NLP may be necessaire, ML methods are in Part III of

Manning's book. Other stats methods are in the rest of this chapter
• Personal fav. ML is HMM, because it has ICE CREAM and it’s simple to implement,

but maths and computer people like to make complexed-up HMM to torture NLP
students

• Training, Held-out, Test data are independent. So with the training data you

train the model, then with the held-out data you estimate the effectiveness (F-
score) of your model, then ...

While (F-score < satisfactory) //s…factory sounds like socola
{
 TrainModel(TrainingData) //returns updated Model, not
 //the MeganFox kind
 EstimateF-score(Model, Held-outData)
 If F-score > satisfactory{break;}
 }
EstimateF-score(Model, TestData) // returns updated F-score
WritePaperandSubmit(F-score, Model, buckloads of pride)

• Then, the chapter goes on and on about how you test your
systems using t-test so that you can know which systems are
significantly better…

• yada, yada… we’ve heard enough on t-test, significant testing, confidence
interval…yada, yada

• If we can perform hold-out estimates between hold-on and
training data, how about between hold-out and test data?

Cross-validation = Deleted estimation
(I don’t really care for fancy synonyms)

Still, this looks very Greeky…

Probability Curve Smoothening != facials at spas

|--------Train1---------|---------Train2 -------|-----------Held-Out---------|
 A B C A B B C C A C B C A A C B C C B C C B C C B A A C B C A B C

1 2
1* 2*

1 2
(1 2)

Pho Pho
sizeTrain TrainAll sizeTrain TrainAll

Pho Pho
TrainAll sizeTrain sizeTrain

Cross-validation = Deleted estimation
(Once again, I still don’t really care for fancy synonyms)

Yet another Greeky looking section…

Discounting != Bargainning at Aldi or Audi or A*di (eeewww, regex)

Absolute Discounting
(Once again, we use arrowy Greek to translate Greek into understandable thingy)

Linear Discounting
(Once again, we use arrowy Greek to translate Greek into understandable thingy)

More complex Discounting
(Yet Another Discounting of Estimation - YADE)

Good-Turing Estimation

GoodGood--Turing DiscountingTuring Discounting

What’s this?

To use the count of things we’ve seen once to To use the count of things we’ve seen once to
help estimate the count of things we’ve never
seen

Formula for Good-Turing algorithm

Formalizing The GoodFormalizing The Good--Turing Turing
AlgorithmAlgorithm
 Smoothed Count C*:

To estimate total number of unseen types:

GT Fish ExampleGT Fish Example
 Imagine you are fishing
There are 8 species: carp, perch, whitefish, trout, salmon, eel,

catfish, bass

 You have caught 10 carp, 3 perch, 2 whitefish, 1 trout, 1
salmon, 1 eel = 18 fish

How likely is it that the next fish caught is from a How likely is it that the next fish caught is from a
new species (one not seen in our previous
catch)?
3/18

 Assuming so, how likely is it that next species is
trout?
Must be less than 1/18

GoodGood--Turing Turing
 Notation: Nx is the frequency-of-frequency-x
So N10=1

Number of fish species seen 10 times is 1 (carp)

 N1=3
Number of fish species seen 1 is 3 (trout, salmon, eel)Number of fish species seen 1 is 3 (trout, salmon, eel)

To estimate total number of unseen
species Use number of species (words) we’ve seen
once

 All other estimates are adjusted
(down) to give for unseen Slide from

GoodGood--TuringTuring
 Notation: Nx is the frequency-of-frequency-x

 To estimate total number of unseen species
Use number of species (words) we’ve seen onceUse number of species (words) we’ve seen once

 All other estimates are adjusted (down) to give
probabilities for unseen

GT Fish ExampleGT Fish Example

ComplicationsComplications
 In practice, assume large counts (c>k for some

k) are reliable:

 That complicates c*, making it:

ComplicationsComplications

Also: we assume singleton counts
c=1 are unreliable, so treat Ngrams
with count of as if they were
count=0count=0

Also, need the Nk to be non-zero, so
we need to smooth (interpolate) the
Nk counts before computing c*
from them

