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Today’s Menu

• N-grams

• Maximum Likelihood Estimators

• Laplace’s Law, Lidstone’s Law, Jeffreys-Perks Law

• Held out Estimation

• Cross Validation

• Good-Turing Estimation



Maximum Likelihood Estimation



What is an N-gram?

• Question: Please turn your homework ...

• what is the most likely word to finish this 
sentence?

• what is an unlikely word to finish this 
sentence?



N-gram

• informally, a way to model that human 
intuition

• formally, word prediction with a 
probabilistic model



N-gram 

• Question: why is it called N-gram?

• Predicts the last word from the previous 
N-1 words.



N-gram

• 1-gram: 1-token sequence of words

• 2-gram: 2-token sequence of words

• 3-gram: 3-token sequence of words

• ...

• N-gram: N-token sequence of words



N-gram

• Exercise: List some of the 1-grams, 2-
grams, 11-grams in the following text

• Bir varmis bir yokmus. Evvel zaman icinde 
kalbur zaman icinde.



N-gram

• Q: Why does N-gram prediction work?

• It turns out, computing the probability of 
the next word is closely related to 
computing the probability of a sequence of 
words



N-gram

• Q: Which sentence is more likely to appear 
in a text

• 1. ...all of a sudden I notice three guys 
standing on the sidewalk...

• 2. ...on guys all I notice sidewalk three 
sudden standing the...



N-gram

• N-gram is an N-token sequence of words

• Can also mean, the model which uses N-
grams to predict the next word or an 
entire sequence of N words.



N-gram

• An important tool in speech and language 
processing

• Handwriting recognition

• P(“I have a gun”) >> P(“I have a gub”)

• Machine translation

• P(“briefed reporters”) >> P(“briefed to 
reporters”)



N-gram

• Spelling correction

• P(“in about fifteen minutes”) >> P(“in 
about fifteen minuets”)

• Augmentative communication

• P(“in” | ”turn your homework”) >> 
P(“the” | ”turn your homework”)



N-gram (estimating the 
next word)

• P(w|h) read as probability of a word w 
given some history h

• Ex: P(the | its water is so transparent that)

• Q: How can we compute this probability?



N-gram (estimating the 
next word)

• One way of computing it:

• estimate it from the relative frequency 
counts.

• but how?



N-gram (estimating the 
next word)

• Step 1: take a large corpus

• .... and he saw the lake .... its water is so 
transparent that he .... and its water is so 
transparent that she ... and its water is so 
transparent that the ...



N-gram (estimating the 
next word)

• Step 2: count the number of times “its 
water is so transparent that” occurs in the 
corpus, call this number count1

• Step 3: count the number of times “its 
water is so transparent that the” occurs in 
the corpus, call this number count2

• Step 4: Divide count2 by count1



N-gram (estimating the 
next word)

• P(the | its water is so transparent that) = 
Count(its water is so transparent that 
the) / Count(its water is so transparent 
that)

• works fine in many cases

• not enough data to make it work in most 
cases.



N-gram (estimating the 
sequence of words)

• What about P(its water is so transparent)?

• Looks like a joint probability of entire 
sequence of words

• Q: How can we compute this probability?



N-gram (estimating the 
sequence of words)

• One way of computing it:

• estimate it from the relative frequency 
counts.

• but how?



N-gram (estimating the 
sequence of words)

• Step 1: take a large corpus

• ... and he went there to fetch some ... its 
water is so transparent ... again said he its 
water is so transparent as to ...



N-gram (estimating the 
sequence of words)

• Step 2: count the number of times “its 
water is so transparent” occurs in the 
corpus, call this number count1

• Step 3: count the number of all 5-grams in 
the corpus, call this number count2

• Step 4: Divide count1 by count2



N-gram(estimation)

• We did a lot of counting

• Q: Isn’t there a cleverer way of estimating 
the probabilities for the next word and for 
the entire sequence of words?



N-gram (some 
notation)

• P(X1=”the”) read as probability of random 
variable X1 taking the value “the” aka P(the)

• w1 ...wn see as sequence of n words

• P(X=w1,  Y=w2, Z=w3, ..., W=wn) see as the 
joint probability of each word in a sequence 
having a particular value, aka P(w1, w2, ...,wn)



Computing P(w1, w2, ..., wn)

• Q: How can we compute the probabilities 
of entire sequences of words?

• In other words, how can we compute P(w1, 
w2, ..., wn)

• Ex: P(its, water, is, so, transparent)



Compt. P(w1, w2, ..., wn)

• One way of computing this probability is to 
use the chain rule

• P(w1, w2, ..., wn) = P(w1) P(w2|w1) P(w3|
w1w2) ... P(wn|w1w2...wn-1)

• This formula shows the link between 
computing the joint probability of a 
sequence and computing the conditional 
probability of a word given previous words



Compt. P(w1, w2, ..., wn)

• P(it is raining outside) = P(it) P(is|it) 
P(raining|it is) P(outside|it is raining)

• The red terms are conditional probabilities 
and yet for long sequences of words, we 
don’t know a way to compute them :(



Compt. P(wn|w1w2...wn-1)

• Q: Can’t we use the relative frequency to 
compute that?

• NO

• that means doing

• Count(every word followed by every 
long string)

• Count(every long string)



Compt. P(wn|w1w2...wn-1) using 
N-gram model 

• Instead of computing the probability of a 
word given its entire history, we can 
approximate the history by just the last few 
words.

• Q: Can we do this? 

• Yes, if we assume that Markov is right.



Compt. P(wn|w1w2...wn-1) using 
N-gram model 

• Q: What did Markov say?

• The probability of a word depends only on 
the previous word.

• So P(outside|it is raining) is approximately 
same as P(outside|raining)



Compt. P(wn|w1w2...wn-1) using 
N-gram model 

• A 2-gram model approximates the 
conditional probability P(w|h) by just 
looking one word into the past

• A 3-gram model does that with two words

• An N-gram model does that with N-1 
words



Compt. P(wn|w1w2...wn-1) N-
gram approximation 

• P(wn|w1w2...wn-1) =approx P(wn|wn-N+1...wn-1)

• N=1: P(wn|w1...wn-1) =approx P(wn)

• N=2: P(wn|w1...wn-1) =approx P(wn| wn-1)

• N=3: P(wn|w1...wn-1) =approx P(wn|wn-2 wn-1)

• The term in red is called the N-gram 
probability



Computing N-gram probability 

• Good that we have an approximation 

• Q: how can we estimate an N-gram 
probability?

• A: the simplest and the most intuitive way 
is to use Maximum Likelihood Estimation 
(MLE)



Computing N-gram probability 

• To estimate the value of P(wn|w1w2...wn-N+1) 
use counts from a corpus and normalize 
them.

• Normalize: divide a count by some total 
count so that resulting probabilities fall 
legally between 0 and 1.



Computing N-gram probability 

• Ex: to compute a particular 2-gram 
probability P(y|x)

• 1. Count how many times this 2-gram 
occurs in the corpus. Count(xy). count1

• 2. Count all the 2-grams that share the 
same first word x. Count(x_). count2

• 3. Normalize by dividing count1 by count2



Computing N-gram probability 

• P(wn|w1...wn-1) = Count(wn-N+1...wn) / 
Count(wn-N+1...wn-1)

• Example in the Speech and Language 
Processing book, page 123



Computing N-gram probability 

• We estimate the N-gram probability by 
dividing the observed frequency of a 
particular sequence by the observed 
frequency of a prefix

• This ratio is called relative frequency



Computing N-gram probability 

• The use of relative frequencies as a way to 
estimate probabilities is an example of MLE

• In MLE, the resulting parameter set 
maximizes the likelihood of the training set 
T given the model M. P(T|M)



Computing N-gram probability 

• Example in the Speech and Language 
Processing book, page 125
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Laplace’s Law, Lidstone’s Law, Jeffreys-Perks Law



Outline 

• Motivation:  why  MLE  doesn’t  work  well? 
• Laplace’s  Law 
• Lidstone’s Law 
• Jeffreys-perks Law 

 
 



Why MLE fails 

• Maximize the probability of observed data: 
assign 0 to unobserved data. 
– Can we enlarge the corpus to avoid this? 



• To  some  extent…  Google  5-gram corpus 
• According to Zipfs’  law: 

– we’ll  always  have  rare  words  not  matter  how  large  
the corpora. (Zipf's law states that given some 
corpus of natural language utterances, the 
frequency of any word is inversely proportional to 
its rank in the frequency table.) 

– Vocabulary= 20,000, then possible bigrams = 
20,000*20,000 
 
 



Zipfs law 

 
 
 
 
 
 
 Empirical evaluation of Zipf's law on Tom Sawyer.  

 -- foundations of statistical NLP P24 



Example 

– Corpus:  five Jane Austen novels 

– N = 617,091 words 

– V = 14,585 unique words 

– Task:  predict  the  next  word  of  the  trigram  “inferior  
to  ________” 
• from test data, Persuasion:  “[In  person,  she  was]  

inferior to both [sisters.]” 

 



Instances in the Training Corpus: 
“inferior  to  ________”  



Maximum Likelihood Estimate: 



Actual Probability Distribution: 



LaPlace’s Law 



Laplace’s  Law(adding one) 



Exercise 

MLE: 𝑃 𝑤 …𝑤 = ( … ) 

Laplace:  𝑃 𝑤 …𝑤 =  ? 
 



Exercise 

MLE: 𝑃 𝑤 …𝑤 = ( … ) 

Laplace:  𝑃 𝑤 …𝑤 = …  

 



Problem of LaPlace’s Law 



Lidstone’s Law 

• We are adding too much! 
• Not add one! But add λ! 
• Exercise:  𝑃 𝑤 …𝑤 =  ? 

 



Lidstone’s Law 

• We are adding too much! 
• Not add one! But add λ! 

• Exercise:  𝑃 𝑤 …𝑤 =   …  

 
 



summarization 

• 𝑃 𝑤 …𝑤 =   …  

– P = probability of specific n-gram 
– C = count of that n-gram in training data 
– N = total n-grams in training data 
– B  =  number  of  “bins”  (possible  n-grams) 
–  = small positive number 

• MLE:  = 0 
LaPlace’s Law:   = 1 
Jeffreys-Perks Law:   = ½  

 



Objections to Lidstone’s law 

• Need an a priori way to determine . 
• Predicts all unseen events to be equally likely 
• Gives probability estimates linear in the MLE. 

Frequency 

– Assume 𝜇 =     

– Then 𝑃 = 𝜇 ( … ) + (1 − 𝜇)  

 



Held out Estimation
Cross Validation



“In  Chinese  Kungfu Culture, the master always keep the 
last  stance  from  his  student”   
– saddnesz.blogspot.com 
  
“In  computational  linguistics,  the  master  student  always  
keeps  a  part  of  the  data  from  the  machine  learning”   
– lilinguistics 



In statistical NLP, our data is split into the training data 
and the held-out data, the purpose is to compare the 
probabilities that we get from the 2 different portions to 
get an estimate.  
 
• You  are  not  assuming  a  prior  weight  unlike  the  λ  

addition in Laplace and Lidstone smoothening. 
(Mathematicians! Only trust them if they convince you with the hieroglyphs they are 
drawing in their formula) 
 

• You are saving your time and effort in getting 
comparable corpora to compare N-grams (but  it’s  a  common  
fallacy that corpus linguists do, I admit I did the same) 
 

• You are using data from the same source to estimate 
probabilities of N-grams  

 



Zo, here comes the math: 

Jibberish?? Obviously this is soooo Greek, sometimes even the 
people  from  Greece  today  don’t  understand  it. 



Imagine we have an ABCorpus that  is  made  up  of  the  letters  ‘A’,  ‘B’  
and  ‘C’.  So we have vocabABCorpus = {A,B,C} and the ABCorpus looks 
like this: 
  
|-------------------Training --------------------|-----------Held-Out------| 
  A B C A B B C C A C B C A A C B C C B C  C B C C B A A C B C A B  
  
 
Training Data:   T    = {A B C A B B C C A C B C A A C B C C B C} 
  
Held Out Data:  HO = {C B C C B A A C B C A B} 



Fistly, from the training data, we list out all the possible 3-grams and group them into how 
many times they occur (in our data, T = 11): 

r   = no. of times the 3-grams appears in training data 
ClassT(r)   = possible 3-grams given vocabulary of the corpus 
SizeClassT(Nr) = no. of items the  ‘set’  of  Class(r)  3-grams appear in the training data 
SizeClassHO(Tr)  = no. of times the  ‘set’  of  Class(r)  3-grams appear in the held-out data 
T  = no. of possible 3-grams in the held-out data 
PHO  = Tr / (Nr*T) 

r Members of ClassT (r) Count of 
ClassT(Nr) 

Count of 
ClassHO (Tr) 

PHO 

3 {CBC} 
2 {BCA, BCC, ACB} 
1 {AAC, ABB, ABC, BBC, 

CAA, CAB, CAC, CCA, 
CCB} 

0 {AAA, AAB, ABA, ACA, 
ACC, BAA, BAB, BAC, 
BBA, BBB, BCB, CBA, 
CBB, CCC} 



Fistly, from the training data, we list out all the possible 3-grams and group them into how 
many times they occur (in our data, T = 11): 

r   = no. of times the 3-grams appears in training data 
ClassT(r)   = possible 3-grams given vocabulary of the corpus 
SizeClassT(Nr) = no. of items the  ‘set’  of  Class(r)  3-grams appear in the training data 
SizeClassHO(Tr)  = no. of times the  ‘set’  of  Class(r)  3-grams appear in the held-out data 
T  = no. of possible 3-grams in the held-out data 
PHO  = Tr / (Nr*T) 

r Members of ClassT (r) Count of 
ClassT(Nr) 

Count of 
ClassHO (Tr) 

PHO 

3 {CBC} 1 2 .18 
2 {BCA, BCC, ACB} 3 3 .091 
1 {AAC, ABB, ABC, BBC, 

CAA, CAB, CAC, CCA, 
CCB} 

0 {AAA, AAB, ABA, ACA, 
ACC, BAA, BAB, BAC, 
BBA, BBB, BCB, CBA, 
CBB, CCC} 



Fistly, from the training data, we list out all the possible 3-grams and group them into how 
many times they occur (in our data, T = 11): 

r   = no. of times the 3-grams appears in training data 
ClassT(r)   = possible 3-grams given vocabulary of the corpus 
SizeClassT(Nr) = no. of items the  ‘set’  of  Class(r)  3-grams appear in the training data 
SizeClassHO(Tr)  = no. of times the  ‘set’  of  Class(r)  3-grams appear in the held-out data 
T  = no. of possible 3-grams in the held-out data 
PHO  = Tr / (Nr*T) 

r Members of ClassT (r) Count of 
ClassT(Nr) 

Count of 
ClassHO (Tr) 

PHO 

3 {CBC} 1 2 .18 
2 {BCA, BCC, ACB} 3 3 .091 
1 {AAC, ABB, ABC, BBC, 

CAA, CAB, CAC, CCA, 
CCB} 

9 3 .03 

0 {AAA, AAB, ABA, ACA, 
ACC, BAA, BAB, BAC, 
BBA, BBB, BCB, CBA, 
CBB, CCC} 

14 3 .019 



r Members of ClassT (r) Count of 
ClassT(Nr) 

Count of 
ClassHO (Tr) 

PHO 

3 {CBC} 1 2 .18 
2 {BCA, BCC, ACB} 3 3 .091 
1 {AAC, ABB, …,  CCB} 9 3 .03 
0 {AAA, AAB, …,  CCC} 14 3 .019 



r Members of ClassT (r) Count of 
ClassT(Nr) 

Count of 
ClassHO (Tr) 

PHO 

3 {CBC} 1 2 .18 
2 {BCA, BCC, ACB} 3 3 .09 
1 {AAC, ABB, …,  CCB} 9 3 .03 

0 {AAA, AAB, …,  CCC} 14 3 .019 

|-------------------Training --------------------|-----------Held-Out-------| 
  A B C A B B C C A C B C A A C B C C B C  C B C C B A A C B C A B  (3) 



r Members of ClassT (r) Count of 
ClassT(Nr) 

Count of 
ClassHO (Tr) 

PHO 

3 {CBC} 1 2 .18 
2 {BCA, BCC, ACB} 3 3 .091 
1 {AAC, ABB, ABC, BBC, 

CAA, CAB, CAC, CCA, 
CCB} 

9 3 .03 

0 {AAA, AAB, ABA, ACA, 
ACC, BAA, BAB, BAC, 
BBA, BBB, BCB, CBA, 
CBB, CCC} 

14 3 .019 

Fistly, from the training data, we list out all the possible 3-grams and group them into how 
many times they occur (in our data, T = 11): 

Why  doesn’t  this  sum  up  to  1???? 



r Members of ClassT (r) Count of 
ClassT(Nr) 

Count of 
ClassHO (Tr) 

PHO 

3 {CBC} 1 2 .18 .18*1 = .18 
2 {BCA, BCC, ACB} 3 3 .091 .09*3 = .27 
1 {AAC, ABB, ..., CCB} 9 3 .030 .03*9 = .27 

0 {AAA, AAB, ABA, ACA, 
ACC, BAA, …,  CCC} 

14 3 .019 .019*14=.27
2727272727 

Fistly, from the training data, we list out all the possible 3-grams and group them into how 
many times they occur (in our data, T = 11): 

Because this adds to 1!!!! 



ClassT(r), using the training data we are listing the different variations of the 3-
grams  and ranking them by how often they occurred in current text  
 
Nr , we count the no. of times 3-grams appears in ‘seen’ text according to the 
ranks 
 
Tr , we count the no. of times 3-grams appears in ‘unseen’  text according to the 
ranks 
 
PHO , we calculate the estimated probability of 3-grams will appear in general 
according to their ranks 

This is the REAL Phở 
>>>>>>>>>>>>>>> 



• Test data, a CARDINAL SIN in Stats NLP is to test on your training data.  
• Honestly, if you think that that will give you 100% precision, it won't. More often 

there are bugs in our systems that even if you train and test on the same data it 
doesn't give you 100%. (From experience) 

 
• Overtraining, models (i.e. in our case N-grams like events) tends to expect 

future events to be like the seen events 
• Language  in  general  shouldn’t  work  that  way,  in  Singlish there are phrases like 'Act 

Blur'  (POS  tagging)  'act  as....',  'act  like  he  is  ...',  'act  as  ...’  However  statistically,  it  does  
if you make sure that your training data does cover an optimal amoun of 
patterns/parameters. 

 
• So predictive natured Stats NLP may be necessaire, ML methods are in Part III of 

Manning's book. Other stats methods are in the rest of this chapter 
• Personal fav.  ML  is  HMM,  because  it  has  ICE  CREAM  and  it’s  simple  to  implement,  

but maths and computer people like to make complexed-up HMM to torture NLP 
students 

 
• Training, Held-out, Test data are independent. So with the training data you 

train the model, then with the held-out data you estimate the effectiveness (F-
score) of your model, then ...  



While (F-score  <  satisfactory)  //s…factory  sounds  like  socola 
{ 
  TrainModel(TrainingData) //returns updated Model, not  
    //the MeganFox kind 
  EstimateF-score(Model, Held-outData) 
  If F-score > satisfactory{break;} 
 } 
EstimateF-score(Model, TestData) // returns updated F-score 
WritePaperandSubmit(F-score, Model, buckloads of pride) 

• Then, the chapter goes on and on about how you test your 
systems using t-test so that you can know which systems are 
significantly  better…   

• yada, yada…  we’ve  heard  enough  on  t-test, significant testing, confidence 
interval…yada, yada 
 

• If we can perform hold-out estimates between hold-on and 
training data, how about between hold-out and test data? 

 



Cross-validation = Deleted estimation  
(I  don’t  really  care  for  fancy  synonyms) 

Still, this looks very Greeky… 



Probability Curve Smoothening != facials at spas 



|--------Train1---------|---------Train2 -------|-----------Held-Out---------| 
  A B C A B B C C A C  B C A A C B C C B C  C B C C B A A C B C A B C 

1 2
1* 2*

1 2
( 1 2)

Pho Pho
sizeTrain TrainAll sizeTrain TrainAll

Pho Pho
TrainAll sizeTrain sizeTrain








Cross-validation = Deleted estimation  
(Once  again,  I  still  don’t  really care for fancy synonyms) 



Yet another Greeky looking  section… 

Discounting != Bargainning at Aldi or Audi or A*di (eeewww, regex) 



Absolute Discounting 
(Once again, we use arrowy Greek to translate Greek into understandable thingy) 



Linear Discounting 
(Once again, we use arrowy Greek to translate Greek into understandable thingy) 



More complex Discounting 
(Yet Another Discounting of Estimation - YADE) 



Good-Turing Estimation



GoodGood--Turing DiscountingTuring Discounting

What’s this?

To use the count of things we’ve seen once to To use the count of things we’ve seen once to 
help estimate the count of things we’ve never 
seen

Formula for Good-Turing algorithm



Formalizing The GoodFormalizing The Good--Turing Turing 
AlgorithmAlgorithm
 Smoothed Count C*:

To estimate total number of unseen types:



GT Fish ExampleGT Fish Example
 Imagine you are fishing
There are 8 species: carp, perch, whitefish, trout, salmon, eel, 

catfish, bass

 You have caught 10 carp, 3 perch, 2 whitefish, 1 trout, 1 
salmon, 1 eel = 18 fish

How likely is it that the next fish caught is from a  How likely is it that the next fish caught is from a 
new species (one not seen in our previous 
catch)? 
3/18

 Assuming so, how likely is it that next species is 
trout? 
Must be less than 1/18



GoodGood--Turing Turing 
 Notation: Nx is the frequency-of-frequency-x
So N10=1

Number of fish species seen 10 times is 1 (carp)

 N1=3
Number of fish species seen 1 is 3 (trout, salmon, eel)Number of fish species seen 1 is 3 (trout, salmon, eel)

To estimate total number of unseen 
species Use number of species (words) we’ve seen 
once 

 All other estimates are adjusted 
(down) to give for unseen Slide from



GoodGood--TuringTuring
 Notation: Nx is the frequency-of-frequency-x

 To estimate total number of unseen species
Use number of species (words) we’ve seen onceUse number of species (words) we’ve seen once

 All other estimates are adjusted (down) to give 
probabilities for unseen



GT Fish ExampleGT Fish Example



ComplicationsComplications
 In practice, assume large counts (c>k for some 

k) are reliable:

 That complicates c*, making it:



ComplicationsComplications

Also: we assume singleton counts 
c=1 are unreliable, so treat Ngrams
with count of as if they were 
count=0count=0

Also, need the Nk to be non-zero, so 
we need to smooth (interpolate) the 
Nk counts before computing c* 
from them


