Chapter 8 in Foundations of Statistical NLP

Lexical Acquisition

LCT/LST Master Bridge Course

Sibel Ciddi, Miloš Ercegovcevic, Evi Kiagia, Mariya Koleva, Antonia Scheidel

Outline

- Introduction to Lexical Acquisition
- Verb Subcategorization
- Selectional Preferences
- Semantic Similarity

What should you do with this?

A) Take it back to the zoo.

B) Score a goal with it.

C) Have it for dessert.

What should you do with this?

A) Take it back to the zoo.

B) Score a goal with it.

C) Have it for dessert.

You shall know a word by the company it keeps. (John Rupert Firth)

You shall know a word by the company it keeps. (John Rupert Firth)

Durian IS good if you have GOOD durian. Fresh durian is slightly sweet and smooth and it has a tender chew to it. Bad durian is mushy! I wouldn't trust durian unless it comes fresh from a tree.

retrieved from http://bit.ly/oHSsjZ

Lexicon: That part of the grammar of a language which includes the lexical entries for all the words and/or morphemes in the language and which may also include various other information, depending on the particular theory of grammar.

Lexicon: That part of the grammar of a language which includes the lexical entries for all the words and/or morphemes in the language and which may also include various other information, depending on the particular theory of grammar.

What do we want for MRDs?

quantitative information

syntactically relevant lexical properties

Lexicon: That part of the grammar of a language which includes the lexical entries for all the words and/or morphemes in the language and which may also include various other information, depending on the particular theory of grammar.

What do we want for MRDs?

Verb Subcategorization

Usage: We say a verb **subcategorizes for** different syntactic categories.

Sem. arguments: Theme, Recipient

Category

NP, PP Subcategory

NP, NP Subcategory

He donated his money to the church.

He gave the church his money.

Verb Subcategorization

...helps us parse sentences like these:

...because we know this:

Tell	NP NP S	
Find	NP NP	

subcategorization frame

Verb Subcategorization - Example

We want to learn subcategorization frames.

Frame	Functions	Verb	Example
NP NP	Subj, obj	Greet	<u>She</u> greeted <u>me</u> .
NP S	Subj, clause	Норе	<u>She</u> hopes he will attend.
NP INF	Subj, infinitive	Норе	<u>She</u> hopes <u>to attend</u> .
NP NP S	Subj, obj, clause	Tell	<u>She</u> told <u>me</u> <u>he will attend.</u>
NP NP INF	Subj, obj, infinitve	Tell	<u>She</u> told <u>him</u> <u>to attend.</u>
NP NP NP	Subj, (dir) obj, indir obj	Give	<u>She</u> gave <u>him</u> <u>the book</u> .

Verb Subcategorization - Example

Use frame learning algorithm ("Lerner", Brent, 1993)

This is the question we need to answer.

→ Does verb **v** take frame **f**?

Two Steps:

I: Define regular patterns which indicate the presence of the frame with high certainty.
2: Perform Hypothesis Testing

Lerner Algorithm - Cues

Example for a cue for frame "NP NP":

(OBJ | SUBJ_OBJ | CAP) (PUNC | CC)

l greet Peter .

Lerner Algorithm - Cues Example for a cue for frame "NP NP": (OBJ | SUBJ_OBJ | CAP) (PUNC | CC) I greet Peter . I arrived on Thursday , as (...)

Lerner Algorithm - Cues Example for a cue for frame "NP NP": (OBJ | SUBJ_OBJ | CAP) (PUNC | CC) I greet Peter . I arrived on Thursday , as (...)

Lerner Algorithm - Cues Example for a cue for frame "NP NP": (OBJ | SUBJ_OBJ | CAP) (PUNC | CC) I greet Peter . X I arrived on Thursday , as (...)

From the definition: Cues indicate the presence of a frame with **high certainty**. Certainty = Probability of error, **ε**^j. How likely is it that we make a mistake if we assign frame **f**^j to verb v based on cue **c**^j?

Lerner Algorithm - Corpus

Table 2

Lexical categories used in the definitions of the cues.

SUBJ: OBJ:	I he she we they me him us them
SUBJ_OBJ:	you it yours hers ours theirs
DET:	a an the her his its my
	our their your this that whose
+TNS:	has have had am is
	are was were do
	does did can could may might must will would
CC:	when before after as while if
PUNC:	. ? ! , ; :

Lexical categories: Regular expressions! Used to "tag" every word in the corpus.

Lerner Algorithm - Corpus

Table 2

Lexical categories used in the definitions of the cues.

SUBJ: I | he | she | we | they OBJ: me | him | us | them SUBJ_OBJ: you | it | yours | hers | ours | theirs DET: a | an | the | her | his | its | my | our | their | your | this | that | whose +TNS: has | have| had | am | is | are | was | were | do | does | did | can | could | may | might | must | will | would CC: when | before | after | as | while | if PUNC: . | ? | ! | , | ; | :

Lexical categories: Regular expressions! Used to "tag" every word in the corpus.

Mark up every verb occurrence with the corresponding frame

Lerner Algorithm - What now?

Define cues for all frames of interest
 For every verb-frame combination:

How often does a cue cⁱ for the frame f^j occur with the verb vⁱ?

We will call this the occurrence count for later reference

 $C(v^i,c^j)$

Lerner Algorithm - Testing

Null Hypothesis H₀: Verb vⁱ does not permit frame fⁱ

Probability P_E of error for rejecting H_0 : P(no_permission | occurrence_count big enough) \downarrow \downarrow \downarrow \downarrow $v^i(f^j) = 0$ $C(v^i, c^j) \ge m^*$

* m: threshold

Lerner Algorithm - Testing

Null Hypothesis H₀: Verb vⁱ does not permit frame fⁱ

Probability P_E of error for rejecting H₀: P(no_permission | occurrence_count big enough)

 $= \sum_{r=m}^{n} {n \choose r} \epsilon_{j}^{r} (1-\epsilon_{j})^{n-r} \qquad \frac{\mathbf{\epsilon}^{j}: \text{ error rate}}{\text{ for cue } \mathbf{f}^{j}}$

If $P_E < \alpha$, we reject H_0 : vⁱ does permit frame f!

Lerner Algorithm - Question

Revision: Confusion Matrix

		Predicted Outcome		
		True	False	
Actual	True	TP	FN	
Value	False	FP	TN	

Question: What are TP, TN, FN and FP for our example?

Lerner Algorithm - Question

Confusion Matrix for Lerner Algorithm

		Cue Found?		
		True False		
Permit	True	TP	FN	
Frame?	False	FP	TN	

Lerner Algorithm - Addition

Manning 1993: Introduction of a tagger

What is different?

- Real tagset instead of regex categories
- Run cue detection on tagger output

What does that change?

- Two error-prone systems
- Unreliable cues are detected \rightarrow More errors?

Lerner Algorithm - Addition

Unreliable cues are detected \rightarrow More errors?

Example:

- $\mathbf{c}^{\mathbf{j}}$ with error rate $\mathbf{\epsilon}^{\mathbf{j}} = 0,25$
- $C(c^{j}) = || (out of 80)$
- $P_E \approx 0.011$, $\alpha = 0.02$
- \rightarrow reject H₀ and permit frame

Lerner Algorithm - Addition

Unreliable cues are detected \rightarrow More errors?

Example:

- $\mathbf{c}^{\mathbf{j}}$ with error rate $\mathbf{\epsilon}^{\mathbf{j}} = 0,25$
- $C(c^{j}) = || (out of 80)$
- $P_E \approx 0.011$, $\alpha = 0.02$

 \rightarrow reject H₀ and permit frame

Number of available cues significantly increased by allowing
 low-reliability cues + additional cues based on tagger output.
 → More verb occurrences have cues for a given frame.

Actually, no.

Lerner Algorithm - Question

Revision? Precision and Recall

Lerner Algorithm - Question

Compute Precision and Recall for the following results:

Verb	Correct Frames	Incorrect Frames	OALD Frames
bridge	I	I	I
burden	2		2
depict	2		3
emanate	I		I
leak	I		5
оссиру	I		3
remark	I	I	4
retire	2	I	5
shed	I		2
troop	0		3
	12	3	29

- Selectional preferences are semantic constraints that regulate the nature of the arguments of a word.
- Selectional Preferences and NOT selectional rules
- Analogous to subcategorization frames but have to do with the semantic organisation of words.

Examples:

- Drink: Drink coffee, drink tea, drink water e.t.c drink+beverage
- Bark: animate subject(dog)+bark
- Metaphorical and figurative use of languagee.g "fear's eating the soul"

Are important because:

 Help us infer the category of a word even though we may not know what it means

Example:

"Susan had never eaten a durian before"

• What can we infer about the durian?

Resnik's model(1993,1996)

Selectional Preference Strength:

- Illustrates how strong is the relationship between the verb and the direct object.
- Distinction between head of the Phrase
 e.g. the green apple → apple
- Distinction into classes of words, something that help us generalize and parametrize words according to their class.

$$S(v) = D(P(C|v) \parallel P(C)) = \sum_{c} P(c|v) \log(\frac{P(c|v)}{P(c)})$$

$$S(v) = D(P(C|v) || P(C)) = \sum_{c} P(c|v) \log(\frac{P(c|v)}{P(c)})$$

- P(C) is the overall probability distribution of Noun Classes
- P(C/v): probability distribution of noun clauses in the direct object position of v

*Nouns are taken from any lexical resource that groups nouns into verb, e.g. Wordnet

Selectional Association

Selectional Association Strenght"

• Of a noun "n" and a single class "c"

A(v,n) = A(v,c)

Of a noun "n" belonging to more than one classes "c"
 A(v,n)= max A(v,c)

Its association strenght is the highest association strenght of any of its classes

Example

"Susan interrupted the chair"

- "Chair": Polysemous as it belongs to more than one classes (furniture) and (people)
- A(interrupt, people)>>A (interrupt, furniture)
- A(interrupt, chair) belongs to the class of people so we can easily disambiguate chair.

Selectional Preferences Strength

- Help us calculate the strenght between noun classes and verbs
- Understand which arguments are more preferred and which are dispreferred

Semantic Similarity

Semantic Similarity Intuitive Notion

- How we usually think about it:
 - Synonymy we see the words as largely interchangeable:

carpet/rug, drink/beverage

- Expanded notion:
 - Words of the same semantic domain: boy/youth
 - Words about entities that co-occur in the real world, even if they are of different syntactic categories: chef, sautee, savoury

Intuitive Notion (cont'd)

- Miller and Charles (1991) words are similar if:
 - They are more or less interchangeable in the same context (cf. carpet/rug);
 - A word is "similar to the appropriate sense" of another (ambiguous) word, i.e. a word w1 would usually be similar only to one sense of an ambiguous word w2:

a record/an account of an event

*a world record/account *a criminal record/account

Two assumptions:

- Semantic properties of a word can be acquired on the basis of semantic similarity or dissimilarity;
- Semantically similar words behave similarly.

Uses

- Generalisation:
 - Similarity-based the nearest neighbours can help us generalize about an unknown element: cf. the durian from selectional preference;
 - Class-based we look not only at the nearest neighbours; we speculate about the entire class to which the word might belong;
- K Nearest Neighbours classification task:
 - A training set of words, assigned to categories;
 - Task: assign an element to a category that is prevalent for K's nearest neighbours;

Types of Similarity Measures

- Vector Space measures:
 - (+) Conceptually simple;
 - (-) Lack clear interpretation of the computed measure;
- Probabilistic measures:
 - (+) solid theoretical footing;
 - (-) rely on some additional transformations;

Vector Space Measures (I)

- Words can be represented as vectors in space;
- Possible spaces:
 - Document space;
 - Word space;

Give topical similarity

• Modifier space; _____ Give different semantic properties

Vector Space Measures (2)

	cosmonaut	astronaut	moon	car	truck
d_1	1	0	1	1	0
d_2	0	1	1	0	0
d_3	1	0	0	0	0
d_4	0	0	0	1	1
d_5	0	0	0	1	0
d_6	0	0	0	0	1

Figure 8.3 A document-by-word matrix A.

	cosmonaut	astronaut	moon	car	truck
cosmonaut	2	0	1	1	0
astronaut	0	1	1	0	0
moon	1	1	2	1	0
car	1	0	1	3	1
truck	0	0	0	1	2

Figure 8.4 A word-by-word matrix B.

	cosmonaut	astronaut	moon	car	truck
Soviet	1	0	0	1	1
American	0	1	0	1	1
spacewalking	1	1	0	0	0
red	0	0	0	1	1
full	0	0	1	0	0
old	0	0	0	1	1

Figure 8.5 A modifier-by-head matrix C. The nouns (or heads of noun phrases) in the top row are modified by the adjectives in the left column.

Vector Space Measures (3)

- How do we use vectors?
 - With binary or real values;
 - (binary) vector the set of non-zero values;
 - Use set operations to calculate similarities;
 - e.g. The vector for cosmonaut in matrix B is {Soviet, spacewalking}

	cosmonaut	astronaut	moon	car	truck
Soviet	1	0	0	1	1
American	0	1	0	1	1
spacewalking	1	1	0	0	0
red	0	0	0	1	1
full	0	0	1	0	0
old	0	0	0	1	1

Vector Space Measures (4)

Definition Similarity measure matching coefficient $X \cap Y$ $2|X \cap Y|$ Dice coefficient Jaccard (or Tanimoto) coefficient Overlap coefficient $|X \cap Y|$ cosme $|X| \times |Y|$

Table 8.7 Similarity measures for binary vectors.

Matching coefficient

• It only counts the number of dimensions which are not zero in both vectors:

cosmonaut = {Soviet, spacewalking}
astronaut = {American, spacewalking}
matching coefficient = I

- The vector length is irrelevant;
- The total number of non-zero dimension in each vector is irreloevant;

Dice Coefficient

- Normalizes for length
- Divides by total number of non-zero entries

cosmonaut = {I,0,I} ({Soviet, American, Spacewalking})
astronaut = {0,I,I}
Dice = ?

Jaccard coeffiecient

 Penalizes more than Dice if the number of shared entries is small

 $\frac{|A \cap B|}{|A \cup B|}$

cosmonaut = {I,0,I} ({Soviet, American, Spacewalking})
astronaut = {0,I,I}

Jaccard = ?

Overlap coefficient

 Checks if the two sets overlap – i.e., if every nonzero entry in one vector is also non-zero in the second vector

 $\frac{|X \cap Y|}{\min(|X|,|Y|)}$

Cosine

- Useful when we compare words for which we have different amounts of data;
- If the vectors have different number of non-zero entries, the cosine penalizes less than Dice.
- Can be used with real value vectors; the angle between two vectors.

$$\frac{|\mathbf{v} \cap \mathbf{w}|}{\sqrt{|\mathbf{v}| \times |\mathbf{w}|}} \qquad \qquad \frac{\vec{v} \cdot \vec{w}}{|\mathbf{v}| \times |\mathbf{w}|} = \frac{\sum_{i=1}^{n} v_i w_i}{\sqrt{\sum_{i=1}^{n} v_i^2} \times \sqrt{\sum_{i=1}^{n} w_i^2}}$$

Probabilistic measures (1)

- Problem: vector space measures operate on binary value vectors;
- We need similarity measures which deal with counts and probabilities;
- Semantic similarity can be viewed as the similarity or dissimilarity between two probability distributions;

Probabilistic measures (2)

 Matrices of counts can be transformed into matrices of probabilities:

	cosmonaut	astronaut	moon	car	truck
Soviet	1	0	0	1	1
American	0	1	0	1	1
spacewalking	1	1	0	0	0
red	0	0	0	1	1
full	0	0	1	0	0
old	0	0	0	1	1

- P (spacewalking | astronaut) = $\frac{1}{2}$ = 0.5
- P (red | truck) = ?

Probabilistic measures (3)

• Three measures of dissimilarity between probability distributions:

(Dis-)similarity measure	Definition
KL divergence	$D(p \ q) = \sum_i p_i \log \frac{p_i}{q_i}$
information radius (IRad)	$D(p\ \tfrac{p+q}{2})+D(q\ \tfrac{p+q}{2})$
L_1 norm	$\sum_i p_i - q_i $

Kullback-Leibler Divergence

- Measures how well distribution q approximates distribution p;
- It is assimetric, although we intuitively see similarity as symmetric;
- May be undefined, if the denominator is 0, which is often the case;

Information Radius

- Based on KL-divergence, but it is always finite;
- Compares total divergence between p and q to the average of p and q;
- Is symmetric;

L₁ (Manhattan) Norm

- Measures the expected proportions of different events;
- Is symmetrical;
- Is well-defined;

Probabilistic Measures in Comparison

 Dagan et al. (1997) find that IRad performs better than the other two metrics and recommend the use of it;