Collocations

Prep Course Statistics Alexandra, Jelke, Jesús, Nikos

Contents

- Intro (what is a collocation)
 - linguistically
 - computationally
- Frequency-based methods
 - Frequency
 - Mean & Variance
- Association measures
 - Chi-square
 - Likelihood ratios
 - Fisher's exact test (Grammatical collocations)
 - Minimum Sensitivity (Collostructions)
- Exercises

What is shown in this picture?

What is shown in this picture?

white wine

What is shown in this picture?

How to translate this phrase?

make a decision

Two approaches:

1. Find the word for **make** and for **decision**, then combine them according to the rules of the language:

*faire une décision

2. Find the word for **decision**, then find the word that performs a similar *function* to **make** when combined with it:

prendre une décision

A linguistically-motivated definition

Kahane, Polguere 2001: "a linguistic expression made up of at least two components:

1. the **base** of the collocation: a full lexical unit (e.g. *smoker*) which is "freely" chosen by the speaker;

2. the **collocate**: a lexical unit (e.g. *heavy*) or a multilexical expression which is chosen in a (partially) arbitrary way to express a given meaning and/or a grammatical structure contingent upon the choice of the base."

A linguistically-motivated definition (cont'd)

Collocations are also **recursive**:

- adopt a radical attitude towards sth
- play a central role
- conduct a thorough investigation
- an increasingly important concern
- following her strong recommendation
- I find it highly unlikely
- ...

Collocation: a more relaxed definition

Manning & Schutze, 1999: "an expression consisting of two or more words that correspond to some conventional way of saying things."

Three criteria are mentioned:

1. Non-compositionality (includes idioms):

to sell off go all the way throw in the towel

2. Non-substitutability:

white wine vs ??yellow wine do me a favor vs ??make me a favor make the bed vs ??do the bed

3. Non-modifiability (mainly for idioms):

??throw in the white towel (works in Greek)

Collocation: a more relaxed definition (cont'd)

The above definition includes:

Phrasal verbs

o tell off, go down, get up

- Idioms
 - Bite the bullet, throw in the towel
- Proper nouns
 - New York, Eiffel Tower, The Doors
- Terminological expressions
 - Computational Linguistics, power failure, citric acid
- Proper collocations (base-collocate combinations)
 - o strong coffee, sneaky attack, take a shower

Collocation is not co-occurrence

- Some authors have generalized collocation to mean all frequently co-occurring words, e.g.:
 - \circ teacher-school
 - o beer-alcohol
 - \circ the ... of
- This is **not** the approach we follow in this presentation
- Instead, collocations are limited to grammatically bound elements that occur in a particular order
- Frequency remains the key for automatically identifying these expressions

Frequency

- quantitative method
- bigrams in a text corpus
- very simple method

$C(w^1 w^2)$	w^1	w^2
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said

Frequency

- improved method by Justeso and Katz (1995)
- they added part-ofspeech patterns
- much better results
- works well for fixed phrase:

$C(w^1 w^2)$	w^1	w^2	Tag Pattern
11487	New	York	A N
7261	United	States	AN
5412	Los	Angeles	NN
3301	last	year	AN
3191	Saudi	Arabia	NN
2699	last	week	AN
2514	vice	president	AN
2378	Persian	Gulf	AN
2161	San	Francisco	N N
2106	President	Bush	NN
2001	Middle	East	AN
1942	Saddam	Hussein	NN
1867	Soviet	Union	AN
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	AN

Mean & Variance (Smadja 1993)

- works well for words in a more flexible relationship
- determines the distance between two words
- Smadja uses a less strict definition of collocation
- succesful at terminological extraction (estimated 80% accuracy)

Mean & Variance (Smadja 1993)

- e.g: they <u>knocked</u> on the <u>door</u> he
 <u>knocked</u> on his <u>door</u> a man
 <u>knocked</u> on Donaldson's <u>door</u> 100
 women <u>knocked</u> on the metal front <u>door</u>
- how to compute the mean offset: 1/4(3+3+5+5)=4.0
- how to compute the variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (d_{i} - \bar{d})^{2}}{n - 1}$$

(n=number of times the words co-occur; di= the offset for co-occurence i; d=the sample mean of the offset)

$$s = \sqrt{\frac{1}{3} \left((3 - 4.0)^2 + (3 - 4.0)^2 + (5 - 4.0)^2 + (5 - 4.0)^2 \right)} \approx 1.15$$

Mean & Variance (Smadja 1993)

- low deviation: words usually occur at about the same distance
- <u>zero derivation</u>: words always occur at the same distance
- <u>high derivation</u>: words stand in no particular relationship to one another
- we can also determine the <u>peaks</u> of words:

- Normally applied to 2-by-2 tables:

	W ₁ = new	W ₁ != new
$W_2 = companies$	8 (new companies)	4667 (e.g., old companies)
W ₂ != companies	15820 (e.g., new machines)	14287173 (e.g., old machines)

 - "...compare the observed frequencies in the table with the frequencies expected for independence. If the difference between observed and expected frequencies is large, then we can reject the null hypothesis of independence."

$$X^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- i -> rows of the table j -> columns of the table
- O_{ij} : observed value for cell (i,j) E_{ij}: expected value for cell (i,j)

for 2-by-2 tables:

$$\chi^2 = \frac{N(O_{11}O_{22} - O_{12}O_{21})^2}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})}$$

 E_{ii} are computed from the marginal probabilities.

In this case:

$$\frac{8+4667}{N} \times \frac{8+15820}{N} \times N \approx 5.2$$

That is, if *new* and *companies* occurred completely independently of each other, we would expect 5.2 occurrences of *new companies* on average.

But since it is a 2-by-2 table we can calculate X²:

$$\frac{14307668(8 \times 14287181 - 4667 \times 15820)^2}{(8 + 4667)(8 + 15820)(4667 + 14287181)(15820 + 14287181)} \approx 1.55$$

Looking up the χ^2 distribution,

at a probability level of $\alpha = 0.05$

$$\chi^2 = 3.841$$

(the statistic has one degree of freedom for a 2-by-2 table)

$1.55 < 3.841 \quad ---> We cannot deny H_0$

Appropiate for: - Large Probabilities

Do NOT apply when:

- The numbers in the 2-by-2 table are small.
- Total sample size < 20
- 20 < sample size < 40 and the expected value in any of the cells is 5 or less.

"It is simply a number that tells us how much more likely one hypothesis is than the other."

- more appropriate for sparse data than χ^2 test.
- more interpretable.

We examine the following two alternative explanations for the occurrence frequency of a bigram w¹w² (Dunning 1993):

- Hypothesis 1. $P(w^2|w^1) = p = P(w^2|\neg w^1)$
- Hypothesis 2. $P(w^2|w^1) = p_1 \neq p_2 = P(w^2|\neg w^1)$

The first one is a formalization of independence, the second one a formalization of dependence (collocation).

٠

Assuming a binomial distribution:

$$P(w^2|w^1)$$
 H_1 H_2 $P(w^2|\neg w^1)$ $p = \frac{c_2}{N}$ $p_1 = \frac{c_{12}}{c_1}$ $P(w^2|\neg w^1)$ $p = \frac{c_2}{N}$ $p_2 = \frac{c_2 - c_{12}}{N - c_1}$ c_{12} out of c_1 bigrams are w^1w^2 $b(c_{12}; c_1, p)$ $b(c_{12}; c_1, p_1)$ $c_2 - c_{12}$ out of $N - c_1$ bigrams are $\neg w^1w^2$ $b(c_2 - c_{12}; N - c_1, p)$ $b(c_2 - c_{12}; N - c_1, p_2)$

$$\log \lambda = \log \frac{L(H_1)}{L(H_2)}$$

= $\log \frac{b(c_{12}, c_1, p)b(c_2 - c_{12}, N - c_1, p)}{b(c_{12}, c_1, p_1)b(c_2 - c_{12}, N - c_1, p_2)}$
= $\log L(c_{12}, c_1, p) + \log L(c_2 - c_{12}, N - c_1, p)$
 $-\log L(c_{12}, c_1, p_1) - \log L(c_2 - c_{12}, N - c_1, p_2)$

where $L(k, n, x) = x^{k}(1 - x)^{n-k}$.

$-2\log\lambda$	$C(w^1)$	$C(w^2)$	$C(w^1w^2)$	w^1	w^2
1291.42	12593	932	150	most	powerful
99.31	379	932	10	politically	powerful
82.96	932	934	10	powerful	computers
80.39	932	3424	13	powerful	force
57.27	932	291	6	powerful	symbol
51.66	932	40	4	powerful	lobbies
51.52	171	932	5	economically	powerful
51.05	932	43	4	powerful	magnet
50.83	4458	932	10	less	powerful
50.75	6252	932	11	very	powerful
49.36	932	2064	8	powerful	position
48.78	932	591	6	powerful	machines
47.42	932	2339	8	powerful	computer
43.23	932	16	3	powerful	magnets
43.10	932	396	5	powerful	chip
40.45	932	3694	8	powerful	men
36.36	932	47	3	powerful	486
36.15	932	268	4	powerful	neighbor
35.24	932	5245	8	powerful	political
34.15	932	3	2	powerful	cudgels

Bigrams of powerful with the highest scores according to Dunning's likelihood ratio test.

- If λ is a likelihood ratio of a particular form,
- then -2log λ is asymptotically χ^2 distributed (Mood et al. 1974:440).
- So we can use the values to test the null Hypothesis.
- Asymptotically means "if the numbers are large enough"

In general the likelihood ratio test is more appropriate than Pearson's χ^2 test for collocation discovery.

Fisher's Exact Test

- Used to test for associations between two variables
 - Identifying dependent bigrams
- Computes a p-value
- Calculates significance exactly (unlike χ^2 test)
- Based on hypergeometric distribution
 - Drawing from a finite population without replacement

Using Fisher's Exact Test

• Natural language data is skewed

 Fisher's test does not require a normal distribution of data

• Sparse data problem

- Fisher's test can be used with small sample sizes

However, Fisher's Exact Test is more computationally intensive.

Example: Determining animacy of nouns

- Human: doctor, player, photographer, Englishman
- Inanimate: banana, Netherlands, feeling, crime
- Automatically determine this based on cooccurrence with verbs
- The doctor thought John was right
- The banana thought John was right

Fisher's Exact Test on animacy data

• Hypothesis: Animate nouns are associated with different verbs than inanimate nouns

- Variables:
 - 1. Verb is "ontstaan" (to start, to arise)
 - 2. Subject is "gevoel" (feeling)
- Binary variables
- 4 classifications

Contingency table

- The Fisher's exact test is calculated using 2x2 tables
- Totals are fixed

The noun "gevoel" (*feeling*) as a subject of the verb "ontstaan" (*to start, to arise*)

	gevoel	¬gevoel	Row totals
ontstaan	298	5927	6225
¬ontstaan	405	111952	112357
Column totals	703	117879	118582

p < 0.00001

Collocation and its opposite

• The p-value can go both ways: Association strength

The noun "gevoel" (*feeling*) as a subject of the verb "schrijven" (*to write*)

	gevoel	¬gevoel	Row totals
schrijven	1	299	300
¬schrijven	702	117578	118282
Column totals	703	117879	118582

p > 0.99999

Hypothesis

- This p-value can be used as a measure of association strength
- A low value indicates a strong association, a high value indicates none
- H0: The noun x and the verb y are independent in subject relations
- H1: The noun x occurs as a subject of the verb y more often than would be expected by chance

Calculating the value

• The p-value expresses the total probability of the observed distribution (table) and all the more extreme ones

gevoel	¬gevoel
298	5927
405	111952
gevoel	¬gevoel
300	5925
103	111950
	gevoel 298 405 gevoel 300 403

	gevoel	¬gevoel
ontstaan	299	5926
¬ontstaan	404	111951
	gevoel	⊐gevoel
	80000	80000
ontstaan	301	5924
-ontstaan	402	111949

Calculating the value

	gevoel	¬gevoel	totals
ontstaan	298	5927	6225
¬ontstaan	405	111952	112357
totals	703	117879	118582

• $P(n) = \frac{6225!*112357!*703!*117879!}{298!*5927!*405!*111952!*118582!}$ • $P(n+1) = \frac{6225!*112357!*703!*117879!}{299!*5926!*404!*111951!*118582!}$ • $p = P(n) + P(n+1) + P(n+2) + \dots$

 A and B are associated more strongly than would be expected by chance (α = 0.001)

Association strength

"gevoel" subject relations (inanimate)

0.0000000000000000000000000000000000000	ontsta	arise
0.0000000000830	heb	have
0.0000000002380	speel	play
0.00000000501125	ben	be
0.00000003404273	zeg	say

0.731409478841741	krijg	get
0.823487761949459	spreek	speak
0.853510038160385	neem	take
0.902189553992116	ken	know
1.00000000002866	schrijf	write

Association strength

"hippie" subject relations (human)

0.001468162077883	ga	go
0.019216198962412	kom	come
0.048523337414639	noem	call, name
0.053750193619017	zeg	say
0.101731760645688	vind	think, find
0.847872307894773	heb	have
1.000000000000009	maak	make

Application

Hypothesis: Animate nouns are associated with different verbs than inanimate nouns

- Classification of nouns
 - Distinguishing feature: The verbs that they occur with
- Use machine learning to classify nouns based on these features

Fisher's Exact Test for association strength

- Fisher's Exact Test is a very robust measure
- It is computationally intensive
- Cannot compare data from samples of different sizes
- Does not show effect size

Minimum Sensitivity

- Handles different sample sizes
- Less computationally demanding
- Measures effect size

Collostructions

- Collostructions: Like collocations, but with constructions and words rather than words and words
- >[sich V]

Johann und Peter [verteidigen] [sich]. Johann and Peter [defend] [themselves / each other].

German *sich*: reflexive and reciprocal construction

Calculating Minimum Sensitivity

P (verb|construction) and P (construction|verb)

	Sich	¬Sich	totals
Fühlen	4,603	12,550	17,153
-Fühlen	91,272	9,647,422	9,738,694
totals	95,875	9,659,972	9,755,847

$$S_{w1} = \frac{4,603}{95,875} = P(v|c)$$
 $S_{w2} = \frac{4,603}{17,153} = P(c|v)$

$$MS = min\{S_{w1}; S_{w2}\}$$

Association strength

- Fisher's Exact Test p-value becomes too small with this much data
- These Minimum Sensitivity scores still work, and show effect size
- 1 --- sich<>zeigen --- 0.0236173981499705
 2 --- sich<>handeln --- 0.0196811651249754
 3 --- sich<>machen --- 0.0186971068687266
 4 --- sich<>stellen --- 0.0185002952174769
 5 --- sich<>befinden --- 0.0159417437512301
 6 --- sich<>fühlen --- 0.0149576854949813
 7 --- sich<>halten --- 0.0147608738437315
 8 --- sich<>setzen --- 0.0131863806337335
 9 --- sich<>einigen --- 0.0120055107262350
 10 --- sich<>wenden --- 0.0116118874237355

- <u>Task for mean and variance</u>: Compute the mean and variance of these example sentences:
 - He drives me mad
 - She drives everyone around her mad
 - He <u>drives</u> Tom's sister <u>mad</u>
 - The disobedient pupil drives his teachers mad

$$s^{2} = \frac{\sum_{i=1}^{n} (d_{i} - \bar{d})^{2}}{n - 1}$$

(n=number of times the words co-occur; di= the offset for cooccurence i; d=the sample mean of the offset)

Exercise

• Task for frequency: Add the missing tag patterns:

Tag Pattern Example

linear function regression coefficients Gaussian random variable cumulative distribution function mean squared error class probability function degrees of freedom

Exercise

Using Minimum Sensitivity, calculate which of these verbs is more strongly associated with the past tense.

 $MS = min\{p(v|c); p(c|v)\}$

	Past tense	¬Past tense	totals
Remember	10	7	17
¬Remember	90	9,893	9,983
totals	100	9,900	10,000
	Past tense	¬Past tense	totals
Plan	Past tense 9	-Past tense 31	totals 40
Plan ¬Plan	Past tense 9 141	-Past tense 31 9,819	totals 40 9,960