Introduction to Statistics Binomial distribution

Grzegorz Chrupała

Saarland University

Binomial distribution

$$
\mathrm{b}(r ; n, p)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

where

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!}, 0 \leq r \leq n
$$

- $b(r, n, p)$ describes the probability of getting exactly r successes in n trials if the probability of success in an individual trial is p
- ($\left.\begin{array}{l}n \\ r\end{array}\right)$ is the number of different orders in which we can get r successes in n trials
- Each attempt is independent, so we multiply $p r$ times (successes) and $(1-p), n-r$ times (failures)
- What is the probability of getting at most r successes?

Binomial distribution

$$
\mathrm{b}(r ; n, p)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

where

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!}, 0 \leq r \leq n
$$

- $b(r, n, p)$ describes the probability of getting exactly r successes in n trials if the probability of success in an individual trial is p
- ($\left.\begin{array}{l}n \\ r\end{array}\right)$ is the number of different orders in which we can get r successes in n trials
- Each attempt is independent, so we multiply $p r$ times (successes) and $(1-p), n-r$ times (failures)
- What is the probability of getting at most r successes?

$$
\sum_{k=0}^{x}\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial test example

- We have made an improvement to our POS tagging model.
- We run the old model and the new model on test sentences.
- The accuracy of the new model is better, but
- Is it because the system is better? If we repeated the experiment on many other test sentences, would be also get improved accuracy?
- Or maybe we got an improvement by chance

Null hypothesis

- Use binomial distribution to answer this question
- Focus on the tokens (words) where one of the models makes a mistake and the other gets the right answer
- There are 10 such cases. In 7 cases the new system is better.
- Assume that the new system is actually no better, and that the chance of it being better on any one word is pure chance, 0.5 This is the null hypothesis.
- How likely are we to get at least 7 out of 10 better, given the null hypothesis?
- How about 55 out of 100 ? 550 out of 1000 ?

Null hypothesis

- Use binomial distribution to answer this question
- Focus on the tokens (words) where one of the models makes a mistake and the other gets the right answer
- There are 10 such cases. In 7 cases the new system is better.
- Assume that the new system is actually no better, and that the chance of it being better on any one word is pure chance, 0.5 . This is the null hypothesis.
- How likely are we to get at least 7 out of 10 better, given the null hypothesis?
- How about 55 out of 100 ? 550 out of 1000 ?
- Two-tailed test:
- Actually we should consider both getting at least $\mathbf{7}$ out of 10 or at most 3 out of 10

