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Random variables

Function X : Ω→ Rn (typically n = 1)

It may be more convenient to work with real number than directly
with events

Coin toss: X : {H,T} → {0, 1}
Sum of two dice throws: {1..6}2 → {2..12}
Probability mass function:

p(x) = P(X = x) = P(A) where A = {ω ∈ Ω : X (ω) = x}

Chrupala (Saarland) Stats October 13, 2011 2 / 15



Expectation
Expectation is a mean (weighted average) of a random variable

E (X ) =
∑
x

p(x) · x

Example: rolling a dice:

E (X ) =

6∑
x=1

p(x)x =
6∑

x=1

x

6
= 3.5

A function g(X ) defines new random variable. In this case:

E (g(X )) =
∑
x

p(x)g(x)

Example?
Also for two random variables:

E (X + Y ) = E (X ) + E (Y )

and if independent
E (XY ) = E (X )E (Y )
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Variance

Variance measures how much values of a random variable vary

Var(X ) = E [(X − E (X ))2]

Standard deviation σ is the square root of the variance

What is the variance of a random variable describing a single throw of
a dice?
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Entropy

Entropy is a measure of degree of uncertainty.

The most important concept in information theory

Entropy is a property of a random variable X distributed according
the pmf p

H(X ) = H(p) = E (− log2(x)) = −
∑
x

p(x) log2(p(x))

For log2(x) units are bits, for ln(x), nats
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Entropy as amount of information

You can think of entropy as measuring the cost of transmitting
information about the result of an experiment

Fair coin toss:

H(X ) = −
1∑

x=0

p(x) log2(p(x)) (1)

=
1

2
[− log2

(
1

2

)
− log2

(
1

2

)
] (2)

=
1

2
· 2 (3)
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Entropy of an unfair coin
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Properties of entropy

H(p) ≥ 0

When is it H(p) = 0?

The highest entropy corresponds to the most uniform distribution
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Entropy: joint and conditional

For two variables X and Y , the amount of information needed to
specify values of both

H(X ,Y ) = −
∑
x

∑
y

p(x , y) log2(p(x , y))

Conditional entropy: if we know the value of X , how much does to
cost to transmit the value of Y ?

H(Y |X ) =
∑
x

p(x)H(Y |X = x) (4)

=
∑
x

p(x)

[
−
∑
y

p(y |x) log(p(y |x))

]
(5)

= −
∑
x

∑
y

p(y |x)p(x) log(p(y |x)) (6)

= −
∑
x ,y

p(x , y) log(p(y |x)) (7)
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Conditional entropy: example

X : number of heads in two tosses of a fair coin

Y : is at least one of two tosses of a fair coin a heads?

X Y

HH 2 1
HT 1 1
TT 0 0
TH 1 1

What is H(X )? What is H(X |Y )?
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Chain rule for entropy

H(X ,Y ) = H(X |Y ) + H(Y )

H(X1, . . . ,Xn) = H(X1) + H(X2|X1) + · · ·+ H(Xn|X1, . . . ,Xn−1)
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Mutual information

From the chain rule we have

H(X ) + H(Y |X ) = H(Y ) + H(X |Y )

Therefore
H(X )− H(X |Y ) = H(Y )− H(Y |X )

This difference is known as Mutual information I (X ;Y )
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Joint and conditional entropy and mutual information
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Mutual information

I (X ;Y ) = H(X )− H(X |Y )

= H(X ) + H(Y ) + H(X ,Y )

· · ·

=
∑
x

∑
y

p(x , y) log

(
p(x , y)

p(x)p(y)

)

What is H(X |X )?

What is I (X ;X )?
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Kullback Leibler divergence

A measure of the difference between two probability mass functions p
and q is Kullback Leibler divergence (relative entropy)

D(p||q) =
∑
x

p(x) log

(
p(x)

q(x)

)
Can be interpreted as an average number of bits wasted by encoding
events distributed according to p with a code based on q

We can define mutual information in terms of KL divergence:

I (X ;Y ) = D(p(x , y)||p(x)p(y))
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