
Introduction to statistics
Session 1

Grzegorz Chrupa la

Saarland University

October 12, 2011

Chrupala (UdS) Statistics October 12, 2011 1 / 28



Key concepts

Axioms of probability

Chain rule and Bayes theorem

Random variables

Entropy

Hypothesis testing

Binomial and normal distributions

Linear and logistic regression

If you are familiar with these, you don’t need this course!
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Course structure

Oct 10 - Oct 11
Basic concepts of Probability and Information
theory with Grzegorz Chrupala
gchrupala@lsv.uni-saarland.de

Oct 12 - Oct 14
Statistics for experimental science with Francesca
Delogu

Oct 17 - Oct 20
Statistics for NLP – reading group

Oct 21
Linear models: Grzegorz Chrupala
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Textbook and topics

Foundations of Statistical NLP, Manning and
Schütze

I For each of the four sessions next week everybody reads
a section of the book.

I A group of students will present the material (45-60
min).

I Follow up with excercises and discussion.
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Suggested topics

Collocations (5)

Statistical estimators (6.2)

Lexical acquisition (8)

Clustering (14)

Other topic possible (talk to me!)

Organize yourselves into groups and agree on topics
by tomorrow
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Today: Basic concepts in probability
theory

Probability notation P (X|Y )
I What does this expression mean?
I How can we manipulate it?
I How can we estimate its value in practice?
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Three aspects of statistics

Descriptive. Mean or median grade at a university.
Distribution of heights among a population of
country

Confirmatory. Are the results statistically
significant?

Predictive. Learn from past data to predict future
events

Another dimension: Frequentist vs Bayesian
(philosophical underpinnings)
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Experiments and Sample Spaces

Consider an experiment or process

Set of possible basic outcomes: sample space Ω
I Coin toss: Ω = {H,T}.
I Dice: Ω = {1, 2, 3, 4, 5, 6}
I Yes/no poll, correct/incorrect: Ω = {0, 1}
I Lottery:|Ω| = 107..1012

I Number of traffic accidents in an area per year: Ω = N
I Misspelling of a word. Ω = Z∗ where Z is an alphabet,

and Z∗ the set of strings over this alphabet
I Guess a missing word: |Ω| = vocabulary size
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Events

An event A is a set of basic outcomes. Event A
takes place if the outcome of the experiment ∈ A

A ⊆ Ω, and any A ∈ 2Ω (all subsets of Ω).
I Ω

is the certain event
I ∅ is the impossible event

Experiment, toss 3 coins
I Ω =
{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

I Event A: there were exactly two tails.
F A = {HTT, THT, TTH}

I Event B: there were three heads.
F B = {HHH}

Chrupala (UdS) Statistics October 12, 2011 9 / 28



Events

An event A is a set of basic outcomes. Event A
takes place if the outcome of the experiment ∈ A

A ⊆ Ω, and any A ∈ 2Ω (all subsets of Ω).
I Ω is the certain event
I ∅

is the impossible event

Experiment, toss 3 coins
I Ω =
{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

I Event A: there were exactly two tails.
F A = {HTT, THT, TTH}

I Event B: there were three heads.
F B = {HHH}

Chrupala (UdS) Statistics October 12, 2011 9 / 28



Events

An event A is a set of basic outcomes. Event A
takes place if the outcome of the experiment ∈ A

A ⊆ Ω, and any A ∈ 2Ω (all subsets of Ω).
I Ω is the certain event
I ∅ is the impossible event

Experiment, toss 3 coins

I Ω =
{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

I Event A: there were exactly two tails.
F A = {HTT, THT, TTH}

I Event B: there were three heads.
F B = {HHH}

Chrupala (UdS) Statistics October 12, 2011 9 / 28



Events

An event A is a set of basic outcomes. Event A
takes place if the outcome of the experiment ∈ A

A ⊆ Ω, and any A ∈ 2Ω (all subsets of Ω).
I Ω is the certain event
I ∅ is the impossible event

Experiment, toss 3 coins
I Ω =

{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}
I Event A: there were exactly two tails.

F A = {HTT, THT, TTH}
I Event B: there were three heads.

F B = {HHH}

Chrupala (UdS) Statistics October 12, 2011 9 / 28



Events

An event A is a set of basic outcomes. Event A
takes place if the outcome of the experiment ∈ A

A ⊆ Ω, and any A ∈ 2Ω (all subsets of Ω).
I Ω is the certain event
I ∅ is the impossible event

Experiment, toss 3 coins
I Ω =
{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

I Event A: there were exactly two tails.

F A = {HTT, THT, TTH}
I Event B: there were three heads.

F B = {HHH}

Chrupala (UdS) Statistics October 12, 2011 9 / 28



Events

An event A is a set of basic outcomes. Event A
takes place if the outcome of the experiment ∈ A

A ⊆ Ω, and any A ∈ 2Ω (all subsets of Ω).
I Ω is the certain event
I ∅ is the impossible event

Experiment, toss 3 coins
I Ω =
{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

I Event A: there were exactly two tails.
F A = {HTT, THT, TTH}

I Event B: there were three heads.

F B = {HHH}

Chrupala (UdS) Statistics October 12, 2011 9 / 28



Events

An event A is a set of basic outcomes. Event A
takes place if the outcome of the experiment ∈ A

A ⊆ Ω, and any A ∈ 2Ω (all subsets of Ω).
I Ω is the certain event
I ∅ is the impossible event

Experiment, toss 3 coins
I Ω =
{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

I Event A: there were exactly two tails.
F A = {HTT, THT, TTH}

I Event B: there were three heads.
F B = {HHH}

Chrupala (UdS) Statistics October 12, 2011 9 / 28



Events and probability

P (Germany wins the game|no rain) = 0.9

Past performance. Germany won 90% of games
with no rain

Hypothetical performance. If they played the game
in many parallel universes

Subjective strength of belief. Would bet up to 90
cents for a chance to win 1 euro.

Output of some computable formula
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Probability notation

P ( Germany wins the game | no rain )
Event A Event B

Given that event B happens, how likely is event A?

Germany wins the game is a predicate which
selects the outcomes that are members of event A
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Frequentist probability

For series i
I Repeat experiment many times
I Record how many times event A occured: counti(A)

The ratios counti(A)
Ti

, where Ti is the number of
experiments in series i, are close to some unknown
but constant value

We can call this constant P (A)
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Estimating probabilities

The constant P (A) is unknown, but we can
estimate it:

I From a single series i: P (A) = countiA
Ti

(the common

case)
I Or take the weighted average of all series i

Chrupala (UdS) Statistics October 12, 2011 13 / 28



Example
Toss three coins.

I Ω =
{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

A: there were exactly three tails
I A = {HTT, THT, TTH}

Run 1000 times

Got one of HTT, THT, TTH 386 times out of 1000

P̂ (A) = 0.386

Run several times: 373, 399, 355, 372, 406, 359

P̂ (A) = 0.379

If each outcome in Ω is equally likely
P (A) = 3/8 = 0.375
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P as a function of sets of outcomes

P (Germany wins|no rain) =
P (Germany wins, no rain)

P (no rain)

no rain

Germany wins
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P as a function of sets of outcomes

P (A|B) = P( A , B ) / P( B )
notation conjunction predicate
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Axioms of probability

P (∅) =

0

P (Ω) = 1

P (A) ≤ P (B) for any A ⊆ B

P (A) + P (B) = P (A ∪B) provided A ∩B = ∅
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Joint and conditional probability

Joint probability and the meaning of commas
I P (A,B) = P (A ∩B)
I P (Germany wins, no rain) = P (Germany wins ∧ no rain)

P (A|B) = P (A,B)/P (B)
I Estimate from counts

P (A|B) =
P (A,B)

P (B)
(1)

=
count(A ∩B)/T

count(B)/T
(2)

=
count(A ∩B)

count(B)
(3)
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Chain rule

P (A|B) = P (A,B)
P (B)

Therefore P (A,B) = P (A|B)P (B)

Generalization:
P (A1, A2, . . . , An)

= P (A1|A2, . . . , An)P (A2, . . . , An)

= P (A1|A2, . . . , An)P (A2|A3, . . . , An)P (A3, . . . , An)

=
n∏

i=1

P (Ai|Ai+1, . . . , An)
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Independence

Two events A and B are independent if
P (A,B) = P (A)P (B)

For independent A, B, does P (A|B) = P (A) hold?

A and B are conditionally independent if
P (A,B|C) = P (A|C)P (B|C)
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Example
There are two urns:

A B

Suppose we pick an urn uniformly at random and then
select a ball from that urn. What is probability that you
pick urn A, and take a blue ball from it?
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Marginal probability

Given P (A,Bi) for disjoint events Bi, find out
P (A).

Use last axiom

P (A) = P ((A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bn))

= P (A ∩B1) + P (A ∩B2) + · · ·+ P (A ∩Bn)

=
n∑

i=1

P (A ∩Bi)
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Bayes rule

P (A,B) = P (B,A) since A ∩B = B ∩ A

P (B,A) = P (B|A)P (A)

Therefore

P (A|B) =
P (A,B)

P (B)

=
P (B,A)

P (B)

=
P (B|A)P (A)

P (B)
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Bayes rule
If we are interested in comparing the probability of
events A1, A2, . . . given B, we can ignore P (B) since it’s
the same for all Ai

argmax
i

P (Ai|B) = argmax
i

P (B|Ai)P (Ai)

P (B)

= argmax
i

P (B|Ai)P (Ai)

This idea is sometimes expressed as

P (A|B) ∝ P (B|A)P (A)
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Example

Suppose we are interested in a test to detect a disease
which affects one in 100,000 people on average. A lab
has developed a test which works but is not perfect.

If a person has the disease it will give a positive
result with probability 0.97

if they do not, the test will be positive with
probability 0.007.

You took the test, and it gave a positive result. What is
the probability that you actually have the disease?
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Credits

Some material adapted from:

Foundations of Statistical NLP

Intro to NLP slides by Jan Hajic

How to use probabilities slides by Jason Eisner
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