Introduction to Morphology Linguistics for Computer Scientists Session 4

Antske Fokkens

Department of Computational Linguistics Saarland University

03 October 2009

		i≻ E	୬ ୯ ୯
Antske Fokkens	Morphology		1 / 69

Outline

А

- 1 Introduction to Morphology
 - Introduction
 - What are morphemes?
- 2 Subdomains of Morphology
- 3 Properties of Morphemes
 - Morphemes and their shapes
 - Morphological Processes
- 4 Morphology in Computational Linguistics
 - Automata
 - Finite State Transducers

	< □ >		$\mathcal{O}\mathcal{Q}$
Antske Fokkens	Morphology		2 / 69

Introduction What are morphemes?

Outline

Introduction to Morphology Introduction What are morphemes? Subdomains of Morphology Properties of Morphemes Morphemes and their shapes Morphological Processes Morphology in Computational Linguistics Automata Finite State Transducers

	< □	うくで
Antske Fokkens	Morphology	3 / 69

Introduction What are morphemes?

What is Morphology?

Morphology is the study of form and structure.

In linguistics, it generally refers to the study of form and structure of words.

		ŧ≻ ≣	590
Antske Fokkens	Morphology		4 / 69

Introduction What are morphemes?

What is morphology?

The term *Morphology* can refer to three different things

- a Description of the behaviour of morphemes and how they are combined.
- b Derivational, inflectional and compositional processes of word formation occurring in a specific language.
 e.g. "German has a richer morphology than English"
- c Description of such word formation processes.

		<□▶ <⊡▶ < ≣▶ < ≣▶	₹	996
Antske Fokkens	Morphology			5 / 69

Introduction What are morphemes?

What are Morphemes?

Morphemes

- Morphemes are minimal meaning-bearing units:
 e.g. *talked* contains two morphemes: *talk* and *-ed* (past).
- Form-function pairs (sound/sign-meaning)
- Basic units of morphology

Morphemes are the "building stones" of phrases

		:► Ē	$\mathcal{O}\mathcal{Q}$
Antske Fokkens	Morphology		6 / 69

Introduction What are morphemes?

Why study morphology? (1/2)

- One of the main properties of language are the sound/meaning pairs
- When analyzing language (or learning a foreign language), we can't simply list all expressions: there is an infinite number of them!
- So we compose expressions into smaller units: usually into phrases and words (syntax)

		▲□▶ ▲圖▶ ▲≣▶ ▲圓	i≻ E	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Antske Fokkens	Morphology			7 / 69

Introduction What are morphemes?

Why study morphology? (2/2)

Can we use words as basic sound/meaning units?

- Problems:
 - 1 Definition of words is unclear
 - 2 Words can be composed of many components that contribute to meaning and/or grammar

Several applications in Computational Linguistics benefit from morphological analysis (more later)

		< ロ > < 団 > < 団 > < 団 > < 団	*) Q (*
Antske Fokkens	Morphology		8 / 69

Introduction What are morphemes?

Words and Morphemes

There are two main usages of the term word:

- **1** Surface form (spoken or written representation)
- Abstract form (lemma or dictionary entry, e.g. bare infinitives in English, nominative single form of nouns in Latin)

The class of forms representing a word in different contexts is called a **lexeme**

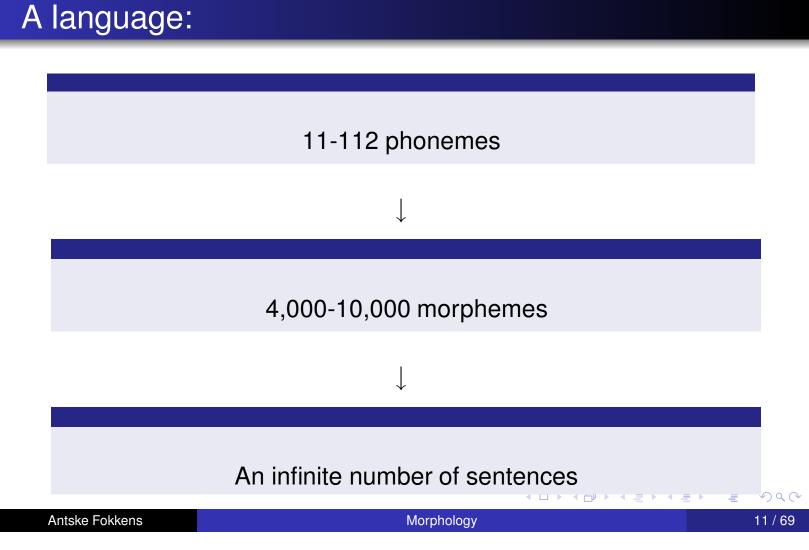
e.g. sing = {*sing, sings, sang, sung, singing*}

Based on Crysmann 2006

Antske Fokkens Morphology 9 / 69

Introduction What are morphemes?

A definition of words?


Words can be described as units of language (either sequences of sounds, or signs) that function as meaning bearers. But this is a fuzzy notion, e.g.:

- talked in she talked expresses both "talking" and past tense.
- Is *more or less* one word, or are there three words?

A structuralist solution: morphemes

	< ⊑	
Antske Fokkens	Morphology	10 / 69

Introduction What are morphemes?

Introduction What are morphemes?

Morphs and Morphological Analysis

The realisations of morphemes are called *morphs*:

- e.g. English plural morpheme: [NUMBER pl]: -s, -es, -en, -Ø boy-s, box-es, ox-en, sheep
- These different realisations of the same morpheme are called **allomorphs**.

Morphological analysis

- Segmentation of expressions into basic units (mostly starting from word-level).
- Classification of these basic units according to function.

Based on Crysmann 2006

Antske Fokkens

Morphology

E

< □ > <⊡ > < ⊡ > < ⊡ >

Introduction What are morphemes?

Types of morphemes

Free Morphemes

Free morphemes can occur independently. Free morphemes are common in both English and German.

e.g. boy, sing

Bound Morphemes

Bound morphemes must be attached to another morpheme, and cannot be used independently.

e.g. [NUMBER pl] -s \rightarrow boys

Based on Crysmann 2006

Antske Fokkens

Morphology

< □ ▶ <⊡ ▶ < ≣ ▶ < ≣ ▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

13/69

Introduction What are morphemes?

Types of bound morphemes

Typical bound morphemes are:

- affixes (boy+s, talk+ed)
- clitics (French: *je ne sais pas*, *je* and *ne* cannot occur without a verb)
- roots (Spanish *habl-* needs an ending indicating person, number, mode, etc.)

		▲□▶▲圖▶▲필▶▲필	► Ē	$\mathcal{O}\mathcal{Q}$
Antske Fokkens	Morphology			14 / 69

Introduction What are morphemes?

Morphemes are form-meaning pairs, but not all segmental forms have an identifiable meaning:

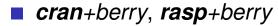
Formatives are forms without identifiable meaning

e.g. Linking elements in German compounds: Geburt+**s**+tag (Birthday), Schwan+**en**+hals (swan neck).

Based on Crysmann 2006

Formatives

		∢□▶∢₫⊁∢≣⊁∢≣	e> ≣	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antske Fokkens	Morphology			15 / 69


Introduction What are morphemes?

Pseudo Morphemes

Pseudo-morphemes or cranberry morphemes are special cases of formatives.

They are segment-able part of a complex word, but do not have an independent meaning:

e.g.

■ *re+ceive*, *con+ceive*

		a≻ E	うくで
Antske Fokkens	Morphology		16 / 69

Outline

- 1 Introduction to Morphology
 - Introduction
 - What are morphemes?
- 2 Subdomains of Morphology
- 3 Properties of Morphemes
 - Morphemes and their shapes
 - Morphological Processes

4 Morphology in Computational Linguistics

- Automata
- Finite State Transducers

		$\mathcal{O}\mathcal{Q}$
Antske Fokkens	Morphology	17 / 69

Areas of Morphology

We distinguish:

- Word forming:
 - Derivational morphology
 - Compounding
- Inflection

) E	596
Antske Fokkens	Morphology		18 / 69

Derivational Morphology

- allows to build complex words by combining bound and free morphemes.
- Derivational operations are per definition optional, i.e. not required by syntactic criteria.

		:► Ē	~ ~ ~
Antske Fokkens	Morphology		19 / 69

Changes made by derivational morphemes

(a) semantics, e.g. $[clear] \rightarrow [un+[clear]] = unclear$

- (b) syntactic category, e.g. $[derive]_V \rightarrow [[[derive]_V + ation]_N + al]_{Adj} = derivational$
- (c) valency of a verb, e.g. [qaw] 'it breaks' \rightarrow [t+[qaw]] 'he breaks it' (Havasupai)
- (d) several from the above, e.g. [understand]_V \rightarrow [[understand]_V+able] = understandable

		:► Ē	596
Antske Fokkens	Morphology		20 / 69

Compounding

 allows to build complex words by juxtaposition of free morphemes.

[[*sale*]+s+[*man*]], [[*dish*]+[*washer*]].

Productive compounding results in an infinite lexicon.

(English)	(phonetics		(teacher	
German		, 0,	•	researcher	þ
(Havasupai	J	morphology		student	J

		e≻ E	うべつ
Antske Fokkens	Morphology		21 / 69

Inflectional Morphology (1/2)

- Inflection is required by syntactic criteria, e.g. an English verb must have tense.
- It marks grammatical (=morpho-syntactic) distinctions:
 - Conjugation (verbal categories):
 - 1 person, number, gender
 - 2 tense, aspect, mood, agreement
 - Declination (nominal categories)
 - case, number, gender, degree, definiteness

		<□≻<⊡≻<≣≻<≣	► Ξ	596
Antske Fokkens	Morphology			22 / 69

Inflectional Morphology (2/2)

- Meaning or, at least, the general concept is (generally) not changed, though when, who or what and sometimes where, how and whether may be specified by inflectional morphemes.
- There are bound and free inflectional morphemes: go [TENSE past]: went go [TENSE future]: will go

	<□> <□> <□> <□>	▲ 토 ▶ ▲ 토 ▶ _ 토	うくで
Antske Fokkens	Morphology		23 / 69

Inflection — paradigm

Inflectional morphology is typically organised in paradigms.

Paradigm

"A set of forms having the same root/stem, one of which must be selected in a certain syntactic environment" (definition based on [Crystal(1997)] (p. 277) and [Payne(1997)] (p. 26))

		∢□▶∢₫▶∢≣▶∢≣	में में जिवल
Antske Fokkens	Morphology		24 / 69

For instance, German conjugation:

Paradigm - an example

present	NUM	IBER	past	NUMBER		
	singular	plural		singular	plural	
1.	dehn-e	dehn-en	1.	dehn-te	dehn-te-n	
2.	dehn-st	dehn-t	2.	dehn-te-st	dehn-te-t	
3.	dehn-t	dehn-en	3.	dehn-te	dehn-te-n	
	I 					

Taken from Crysmann 2006

		<□▶ <∄▶ <≣▶ <	tr te	D
Antske Fokkens	Morphology			25 / 69

Morphemes and their shapes Morphological Processes

Outline

А

- 1 Introduction to Morphology
 - Introduction
 - What are morphemes?
- 2 Subdomains of Morphology

3 Properties of Morphemes

- Morphemes and their shapes
- Morphological Processes

4 Morphology in Computational Linguistics

- Automata
- Finite State Transducers

	<	ŧ► Ę	うべつ
Antske Fokkens	Morphology		26 / 69

Morphemes and their shapes Morphological Processes

Some Basic Notions

- Root: an unanalysable form, expressing the basic lexical content of a word. Also defined as 'what is left of a complex form when all affixes are stripped'.
- Stem: consists of at least a root. It can contain (an) derivational affix(es). In inflectional morphology, *stem* is generally defined as the root + a thematic vowel.
- Base: a form to which an affix may be added. A base may be simplex (root) or complex (root + affixes).

		▲□▶ ▲圖▶ ▲≣▶ ▲≣	i≻ ≣	~ ~ ~
Antske Fokkens	Morphology			27 / 69

Morphemes and their shapes Morphological Processes

Morphological Processes

Bases can be altered by the following processes:	
 Affixation Prefixation Suffixation Circumfixation Infixation Stem Modification Substitution (vowel mutation, suppletion) Subtraction Suprasegmental Modification Tone Stress 	
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶	E ×

Antske Fokkens

Morphology

28 / 69

Morphemes and their shapes Morphological Processes

Affixation

Antske

- Affixes are bound morphemes
- Their position is fixed with respect to the base
 - a prefix precedes the base
 - **im**-possible
 - a suffix follows the base
 - want-**ed**
 - a circumfix surrounds the base
 - **ge**-dehn-t
 - an infix is placed within the base
 - *f-um-ikas* 'become strong', *fikas* 'be strong' (Bontok, Philippines)
- Affixation can be a recursive process
- Prefixes and suffixes are most frequent cross-linguistically

		《口》《卽》《言》《言》	E 990
ke Fokkens	Morphology		29 / 69

Morphemes and their shapes Morphological Processes

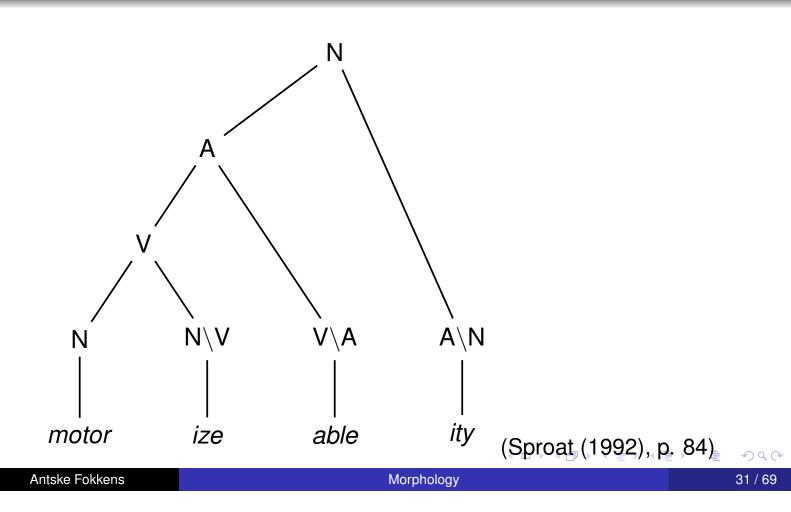
Affixation (cont)

- Words can have an internal structure (see next slide)
- The order of application can be significant, e.g. [in-[describe-able]], [[*in-describe]-able] [[un-do]-able] vs [un-[do-able]]
- Constraints on morpheme order are described by morphotactics
- Morphotactics can be determined by
 - word syntax (e.g. indescribable)
 - lexical strata
 - non-im-partial vs. in-non-partial

Based on Crysmann 2006

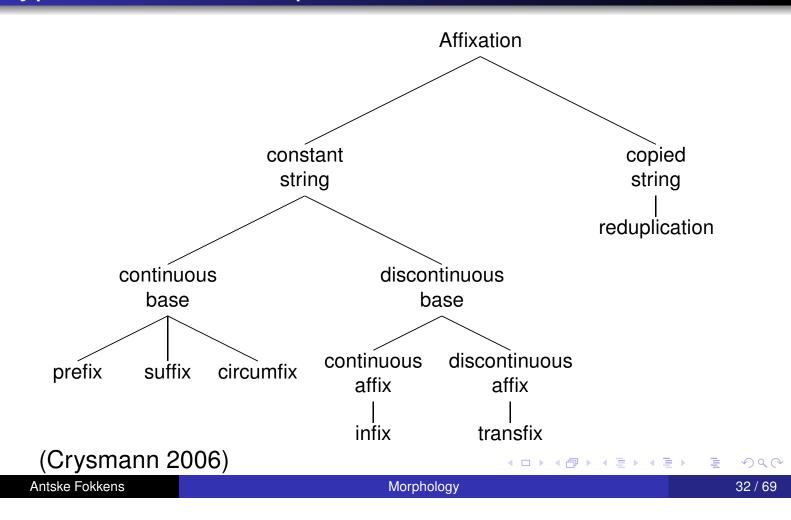
Antske Fokkens

Morphology


୬ ୯.୧ 30 / 69

₹

< □ > <⊡ > < ⊡ > < ⊑ > < ⊑ >


Morphemes and their shapes Morphological Processes

Internal structure of motorizability

Morphemes and their shapes Morphological Processes

Types of affixational processes

Morphemes and their shapes Morphological Processes

Infixation

Bas

Antsk

- An infix is a continuous affix that attaches within the base
- Infixation is rare in European languages
- Infixation is often motivated by prosodic factors
 - Tagalog places affixes in the base to avoid closed syllables (i.e. syllables that end in a consonant)
 - $\blacksquare um- + sulat \rightarrow sumulat$
 - sulat + reduplication: susulat and sumusulat
 - \blacksquare um- + aral \rightarrow umaral
- Infixation can also be purely morphologically conditioned:
 - e.g. Udi (Nakh-Daghestanian, Azerbaijan) infixation:

	box uk	Transitive bo- ne -x-sa u- ne -k-sa		Intransitive box- ne -sa uk- ne -sa	boils is edible		
sed on Crysma	ann 2006			< □ ▶	 ● ● > >	Ē	うべつ
ke Fokkens			Morph	hology			33 / 69

Morphemes and their shapes Morphological Processes

Transfixation

- A the segment of a transfix interleaves with the base's segment (i.e. both base and affix are discontinuous)
- Transfixation is common in Semitic languages (e.g. Arabic and Hebrew)
- The following forms are derived from the root ktb in Maltese

Transfix	Word	Gloss
-i-e-	kiteb	'he wrote'
-i—u	kitbu	'they wrote'
mi—u-	miktub	'written'
<i>—ie-</i>	ktieb	'book'
-0–a	kotba	'books'

Based on Crysmann 2006

Antske Fokkens

Morphology

< ロ > < 団 > < 巨 > < 巨 >

E

Morphemes and their shapes Morphological Processes

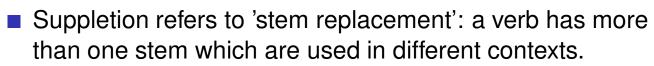
Modification

- Morphological processes can effect stem internal segments
- The German vowel mutation ("umlaut" and "ablaut") are typical examples of such a process
- Umlaut:
 - Phonologically predictable segmental alternation (e.g. vowel fronting in German)
 - $a \rightarrow \ddot{a}$ (*Wald, Wälder* ("forest, forests"))
 - $u \rightarrow \ddot{u}$ (*Mutter, Mütter*, ("mother, mothers"))
 - $o \rightarrow \ddot{o} (tot, T\ddot{o}dlich ("dead, deadly"))$

Ablaut:

- Phonologically unpredictable segmental alternation
 - gehen, ging, gegangen vs sehen, sah, gesehen

Based on Crysmann 20	06	↓□ → ↓@ → ↓ ≥ → ↓]	ŧ≻ ≣	500
Antske Fokkens	Morphology			35 / 69


Morphemes and their shapes **Morphological Processes**

Example of a suprasegmental morpheme

- In Sabaot (Nilotic, Kenya & Uganda) uses advanced tongue root and normal vowels as morphemic contrast.
- This process may be applied to the entire word, as in the example below:
 - kčcmnyccnccté (1) $ka - a - mnyaan - aa - t\varepsilon - ATR$ PAST-1SG-be.sick-STAT-DIR-IMPERF "I went being sick (but I am not sick now)"
 - káámny áánáát é (2) $ka - a - mnyaan - aa - t\varepsilon$ PAST-1SG-be.sick-STAT-DIR "I became sick while going away (and I am still sick)"

(Payne 1997	, p.29)	≧▶∢≧▶ ≧ ∽Q.(~
Antske Fokkens	Morphology	36 / 69

Morphemes and their shapes Morphological Processes

- In many European languages, suppletion occurs with the verb 'to be', e.g. in English, the verb uses three historically different roots:
 - am, are, is
 was, were
 - be

(Payne, 1997)

Suppletion

		<□▶ <∄▶ <≧▶ <≧	▶ ■	596
Antske Fokkens	Morphology			37 / 69

Morphemes and their shapes Morphological Processes

Subtractive Morphology (1/2)

- Subtractive morphology means that part of the stem is omitted to mark a morphological process.
- For instance Koasati (a Muskogean language, spoken in the US):

Singular	Plural	Gloss
pit af -fi-n	pit-li-n	to slice up the middle
las ap -li-n	las-li-n	to lick something
acokcan a: -kaln obakhit ip -li-in	acokcan-ka-n obakhit-li-n	to quarrel with someone to go backwards

Data taken from Sproat (1992)

		er i e	うくで
Antske Fokkens	Morphology		38 / 69

Morphemes and their shapes Morphological Processes

Subtractive Morphology (2/2)

- The shape of the base cannot be predicted from the derived form
- Subtractive Morphology is problematic for theories assuming that morphology consists of the addition of morphemes

Based on Crysmann 2006

		→ ▲ 重 →	₹	596
Antske Fokkens	Morphology			39 / 69

Reduplication

- Reduplicated morphemes are formed by reduplicating (part of) the base.
- In total reduplication the entire base is copied, though minor changes may occur, e.g. ([Kiparsky(1987)] (p. 115-117)

Indor	nesian: <i>orang</i> 'man'	<i>orang</i> orang 'men'	
Javar	nese:		
	Base	Habitual-Repetitive	Gloss
	bali	bola bali	'return'
	udan	udan ud $arepsilon$ n	'rain'
Based on Crysmann 200	6		

			~ ~ ~
Antske Fokkens	Morphology		40 / 69

Morphemes and their shapes Morphological Processes

Suprasegmental Marking

Stress

English verb-noun derivations:

Verb	Noun
pro duce	pro duce
per mit	per mit
im port	im port
in sult	in sult
dis count	discount

Tone

Chicheŵa:

	Form	Tense/aspect			
	ndi-ná-fótokoza	simple past			
	ndi-na-fótókoza	recent past			
	ndí-nâ:-fótókoza	remote past			
	ndí-ma-fotokózá	present habitu	al		
	ndi-ma-fótókoza	past habitual			
			• • • • • • • • • • • • •	€	うみで
Antske Fokkens		Morphology			41 / 69

Morphemes and their shapes Morphological Processes

Morphophonological Processes (1/2)

The environment of morphemes can influence their appearance (phonological and/or graphemic alternations)
Morphophonological Alternations

Assimilation
Homographic nasal assimilation *iN+possible → impossible iN+complete → incomplete iN+resistable → irresistable*Epenthesis: *wish+s → wishes*Graphemic alternations: *y* + *s* ~ *ies*

 Antske Fokkens
 Morphology
 42 / 69

Morphemes and their shapes Morphological Processes

Morphophonological Processes (2/2)

- The environment influencing the morpheme's form need not be directly adjacent to the morpheme
- Harmony rules impose identity of sound features (typically vowel features)

E.g. Finnish vowel harmony						
	low	mid	high			
back vowels	а	0	u			
front vowels	ä	ö	ü			
neutral vowels		е	i			

- taivas + ta → taivasta (*taivastä)
- Iyhyt + ta → lyhyttä (*lyhytta)

		► Ξ	9 Q (P
Antske Fokkens	Morphology		43 / 69

Morphemes and their shapes Morphological Processes

(Morpho)phonological rules

- [Chomsky and Halle(1968)] propose phonological rules to derive "surface" morphemes in *The Sound Pattern of English* (SPE)
- They were formalized as (ordered) context-sensitive rewrite rules:

 $a \rightarrow b/v_w$ e.g. *iN-* \rightarrow *im-*/_*m*

		◆□▶ ◆圖▶ ◆臣▶ ◆臣)	_	.) ~ (.
Antske Fokkens	Morphology			44 / 69

Morphemes and their shapes Morphological Processes

(Morpho)phonological rules

- There was a strong believe that related morphemes are all derived from the same underlying representation, even if this form never occurs on the surface (e.g. divine and divinity would come from the root divIn)
- The approach did not take general phonetic constraints within the language in account, nor did it address rules and tendencies in morpheme structures

		▲□▶▲@▶▲≣▶▲≣	~ ~ ~
Antske Fokkens	Morphology		45 / 69

Declination of puella

Latin declination of a noun of the first declination:

case	NUMBER		
	singular	plural	
NOM	puella	puellae	
GEN	puellae	puellarum	
DAT	puellae	puellis	
ACC	puellam	puellas	
ABL	puella	puellis	

		► Ξ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antske Fokkens	Morphology		46 / 69

Syncretism/exponence

We observe both:

- syncretism: the same form is used to express different feature combinations.
 - e.g. in the declination of *puella*:
 - -ae: GEN or DAT singular, or NOM plural
 - -a: NOM or ABL singular
 - -is: DAT or ABL plural
- exponence: the relation between form and function is m:n:
 - multi-exponence (cumulation): one form expresses several functions.

Here: -am expresses both accusative and singular

Extended exponence: in ge-dehn-t, ge- and -t express one function together.

		E► E	うくつ
Antske Fokkens	Morphology		47 / 69

Morphological Properties — Synthesis

Synthesis: the number of morphemes that tend to occur within a word.

- In isolating languages words tend to consist of only one morpheme. (e.g. Chinese languages)
- Polysynthetic languages are known for the large number of morphemes that may occur in a single word. For instance, the Quechua and Inuit languages. The following example is from Yup'ik:
 - (3) tuntussuqatarniksaitengqiggtuq tuntu-ssur-qatar-ni-ksaite-ngqiggte-uq reindeer-hunt-FUT-say-NEG-again-3gg-IND
 'He had not yet said again that he was going to hunt reindeer'

([Payne(1997	')], p. 28)		< □ > < @ > < 差 > < 差 >	1	৶৻৻
Antske Fokkens		Morphology			48 / 69

Morphological Properties — Fusion (1/2)

Fusion: the number of meaning units that are found in one morphological shape:

- Agglutinative languages have little fusion: each meaning component is represented by its own morpheme (e.g. Turkish).
- Fusional languages have morphemes that express many meaning units: e.g. -ó in Spanish habló expresses indicative mode, 3rd person, singular, past tense and perfect aspect.

	< ⊏	□▶ ◀ @ ▶ ◀ ≧ ▶ ◀	≣►	E
Antske Fokkens	Morphology			49 / 69

Morphological Properties — Fusion (2/2)

In English, both examples of agglutinative morphemes, and fusional ones can be found:

- **agglutinative**: anti+dis+establish+ment+arian+ism
- fusion: vowel change in plural forming (goose/geese) and strong verbs (sing/sang).

Individual morphemes (root and number/tense) cannot be segmented in chunks, therefore these forms are fusional.

		▶ 重	うくで
Antske Fokkens	Morphology		50 / 69

Automata Finite State Transducers

Outline

- 1 Introduction to Morphology
 - Introduction
 - What are morphemes?
- 2 Subdomains of Morphology
- 3 Properties of Morphemes
 - Morphemes and their shapes
 - Morphological Processes

4 Morphology in Computational Linguistics

- Automata
- Finite State Transducers

		e≻ ≣	うんで
Antske Fokkens	Morphology		51 / 69

Automata Finite State Transducers

Morphology in Computational Linguistics

Morphology related applications in computational linguistics are:

1 Analysing complex words, defining their component parts:

anti+dis+establish+ment+arian+ism

2 Analysis of grammatical information, encoded in words:

sings
sing[PERSON 3, NUMBER singular,TENSE present]

		∢□▶∢₫▶∢≣▶∢≣▶	ヨ	20
Antske Fokkens	Morphology		52/	69

Automata Finite State Transducers

Morphological Processing

Inflection

- Iemmatisation/stemming
- extraction of grammatical (morpho-syntactic) features (preprocessing for parsing)
- State of the art: finite state technology (to be discussed)

Reduction of lexicon size (English 2:1, German 5:1, Finnish/Turkish >200:1) (Crysmann 2006)

		∢□▶ ∢@▶ ∢≧▶ ∢≧▶	æ	୬ ୯ (
Antske Fokkens	Morphology			53 / 69

Automata Finite State Transducers

Morphological Processing (cont)

- Derivational Morphology
 - Semi-productivity is still a challenge
 - Rule-based approaches tend to suffer from over-generation
- Compound Analysis
 - Important for languages with productive compounding
 - Additional task: bracketing

	< □ ▶ < ₫	マック ヨー・ヨー・ヨー・
Antske Fokkens	Morphology	54 / 69

Automata Finite State Transducers

Why do we need morphology?

- For linguistic tools, such as parsers:
 significant reduction of lexicon size
- For statistical methods: reduces unseen data: in a morphologically rich language, many words will be found in each possible form, even in a large training corpus.

Machine translation runs into problems, in particular when translating from a morphologically poor to a morphologically rich language. This is expected to become a 'hot topic' in MT

State of the art: Finite State Transducers

	◆□ ▶ ◆舂 ▶ ◆	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
Antske Fokkens	Morphology	55 / 69

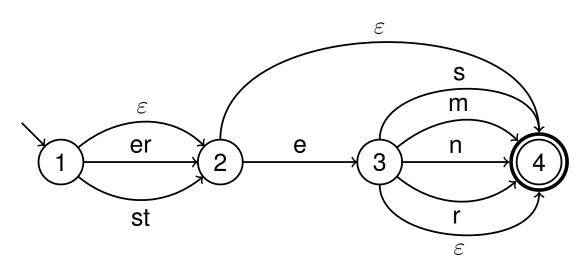
Automata Finite State Transducers

Non-deterministic Finite Automata (NFA)

Definition

A non-deterministic finite automaton is a quintuple (Q, Σ, δ, q₀, F), where
Q is a finite set of states
Σ is a finite set of symbols
δ is a transition function *delta* : Q × Σ → Q, such that for each q_i ∈ Q and each σ ∈ Σ, there is a q_j such that δ(q_i, σ) = q_j, where q_j is a non-final sink state, unless σ is licit at state q_i
q₀ ∈ Q is a unique initial state
F ⊆ Q is a set of final states
At worse, a NFA's complexity is exponential at word length

Antske Fokkens

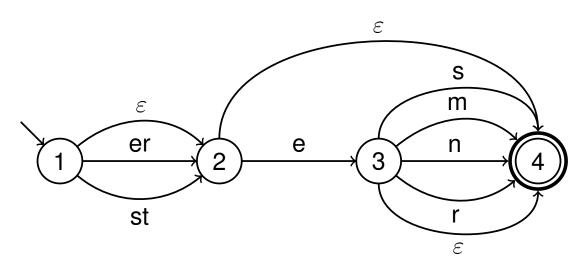

Morphology

Automata Finite State Transducers

An example of a NFA

German adjectives

■ klein+ er+ es

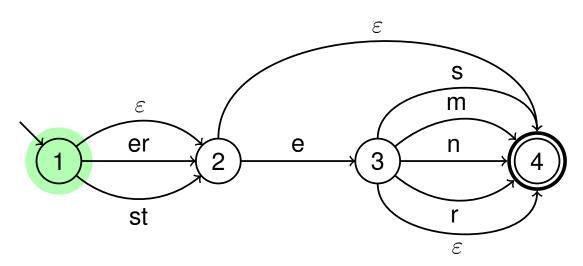


Based on Crysmann 2006

Automata Finite State Transducers

An example of a NFA

- German adjectives
- klein+ er+ es

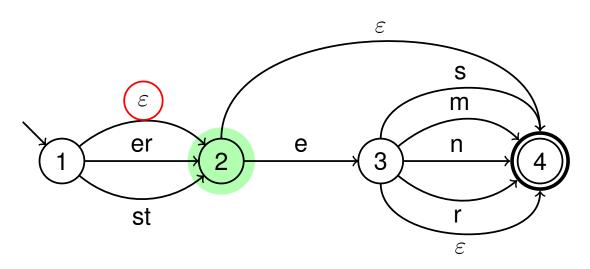


Based on Crysmann 2006

Automata Finite State Transducers

An example of a NFA

- German adjectives
- klein+ er+ es



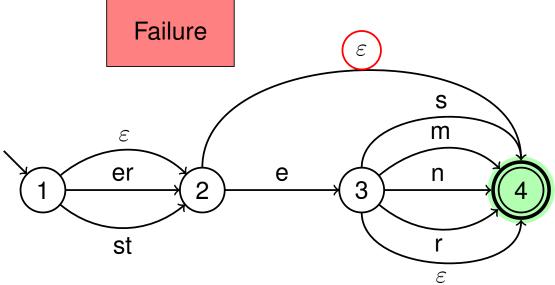
Based on Crysmann 2006

Automata Finite State Transducers

An example of a NFA

- German adjectives
- klein+ er+ es

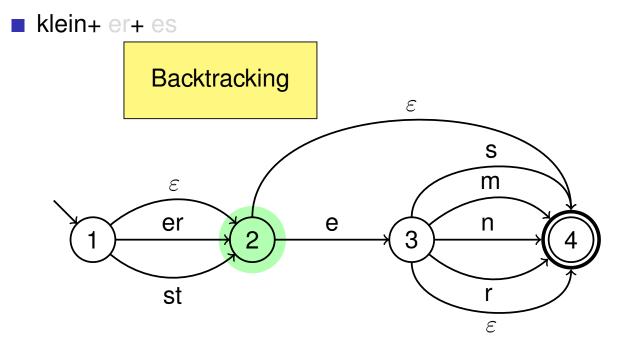
Based on Crysmann 2006


		· 트	うくで
Antske Fokkens	Morphology		57 / 69

Automata Finite State Transducers

An example of a NFA

German adjectives

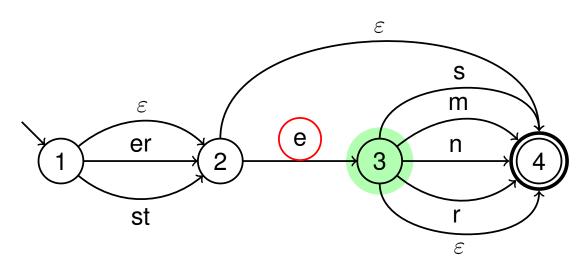


) Q (
Antske Fokkens Morphology	57 / 69

Automata Finite State Transducers

An example of a NFA

German adjectives

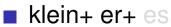


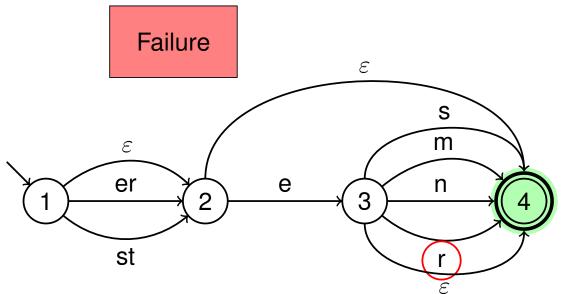
Based on Crysmann 20	06	<□ > <⊡ > < ⊡ > < ⊡ > < ⊡ >	E nac
Antske Fokkens	Morphology		57 / 69

Automata Finite State Transducers

An example of a NFA

- German adjectives
- klein+ er+ es




Based on Crysmann 2006

Automata Finite State Transducers

An example of a NFA

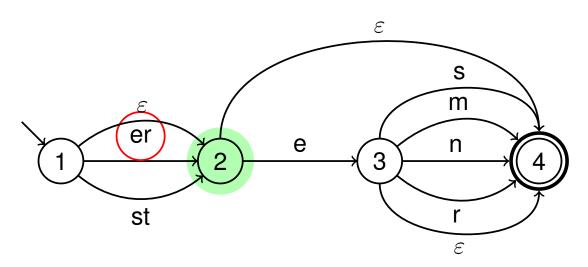
German adjectives

Based on Crysmann 20	06 • • • • •	(콜) (홈) (콜)	596
Antske Fokkens	Morphology		57 / 69

Automata Finite State Transducers

An example of a NFA

German adjectives

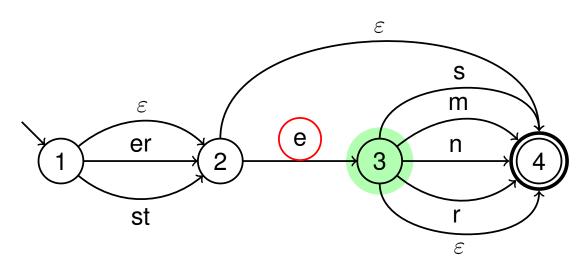


Based on Crysmann 20		a≻ E	うへで
Antske Fokkens	Morphology		57 / 69

Automata Finite State Transducers

An example of a NFA

- German adjectives
- klein+ er+ es

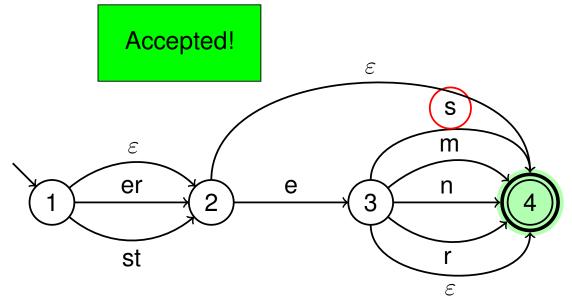

Based on Crysmann 2006

		< ロ > < 団 > < 直 > < 耳	e) E	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Antske Fokkens	Morphology			57 / 69

Automata Finite State Transducers

An example of a NFA

- German adjectives
- klein+ er+ es



Based on Crysmann 2006

Automata Finite State Transducers

An example of a NFA

- German adjectives
- klein+ er+ es

Based on Crysmann 20	06	► E	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Antske Fokkens	Morphology		57 / 69

Automata Finite State Transducers

Deterministic Finite Automata (DFA)

- So what about the worse case exponential complexity of NFA?
- **Deterministic** Finite Automata (DFA) are linear at worse case
- For each NFA, there is always an equivalent DFA (Hopcroft and Ullman 1979)

DFA, Definition

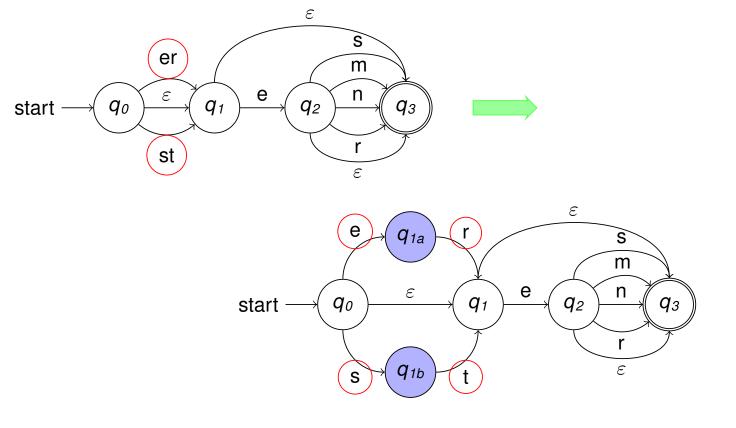
- A deterministic finite automaton is a quintuple (Q, Σ, δ, q₀, F), where
 - Q is a finite set of states
 - Σ is a finite set of symbols
 - δ is a transition function $\delta : \boldsymbol{Q} \times \boldsymbol{\Sigma} \to \boldsymbol{Q}$,
 - $q_0 \in Q$ is a unique initial state
 - $F \subseteq Q$ is a set of final states

Antske Fokkens

Morphology

From NFA to DFA

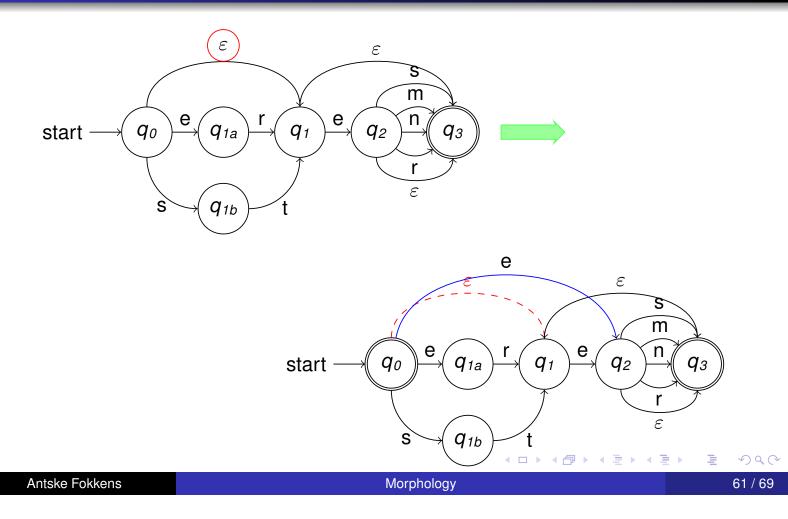
For each **Nondeterminstic** finite state machine, there is an equivalent **deterministic** finite state machine


Step to take:

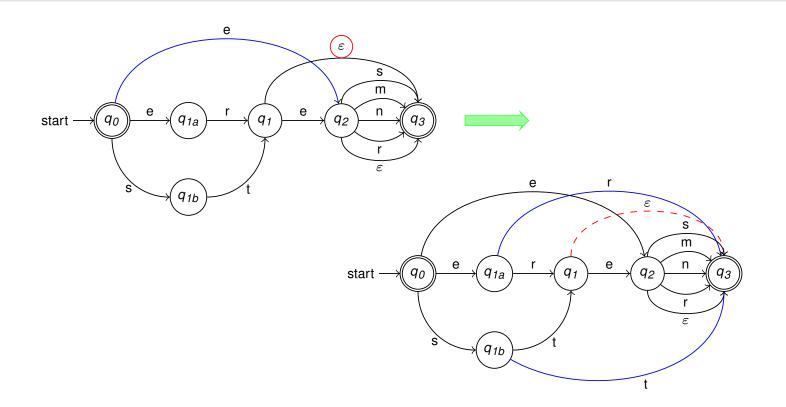
- **1** Expand edges that take more than one input character
- 2 Eliminate ε -edges (by adding alternative edges)
- Construct power automaton (recursively combine states reached by the same input symbol)

		≣) ≣	996
Antske Fokkens	Morphology		59 / 69

Automata Finite State Transducers

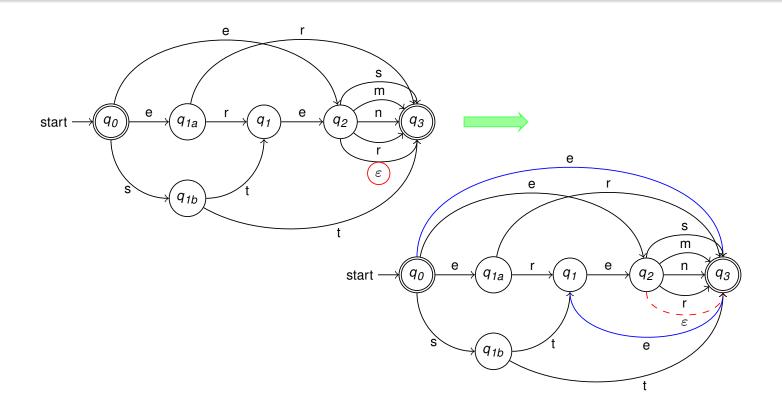

Expanding multiple symbol edges

Based on Crysmann 20	06 《 ㅁ ▷ 《 @ ▷ 《 홈 ▷ 《 홈	▶ 目 う∢ ??
Antske Fokkens	Morphology	60 / 69


Automata Finite State Transducers

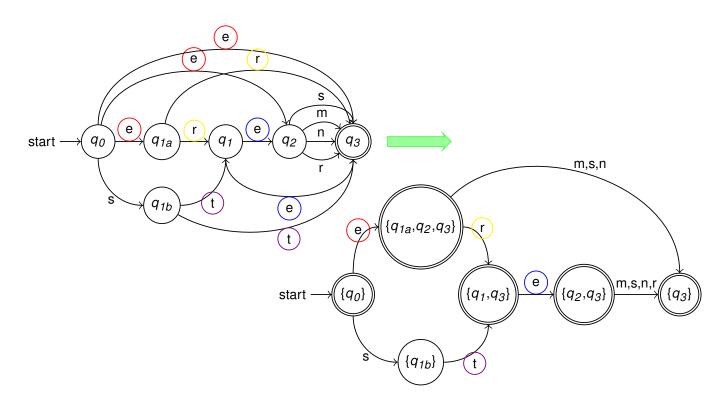
Eliminating ε -edges

Automata Finite State Transducers


Elimination of ε edges

Based on Crysmann 20	06			
		・ロ・・白・・ロ・・ロ・	E	うくで
Antske Fokkens	Morphology			62 / 69

Automata Finite State Transducers


Elimination of ε edges

Based on Crysmann 20	06		
	< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >	Ē	596
Antske Fokkens	Morphology		63 / 69

Automata Finite State Transducers

Constructing a power automaton

Based on Crysmann 2006

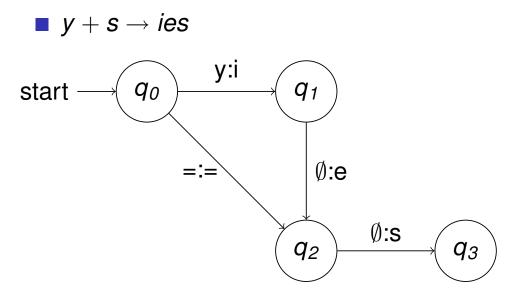
	4	i> ≣	500
Antske Fokkens	Morphology		64 / 69

Automata Finite State Transducers

Finite State Transducers

- Finite State Transducers are variants of Finite State Machines that accepts language over symbol pairs (a:a,a:c) instead of single symbols
- Conventionally, left hand symbols correspond to lexicon input, and right-hand symbols to the surface string
- The Ø can appear both on input string and output string, the symbol "=" (or @) stands for the 'any' symbol
- FSTs can be used to implement phonological rules ([Johnson(1972)])

Based on Crysmann 2006


Antske Fokkens

Morphology

< □ > <⊡ > < ⊡ > < ⊑ > < ⊑ >

Automata Finite State Transducers

A Finite State Transducer

Based on Crysmann 2006

	・ ロ > ・ 4 画 > ・ 4 画 > ・ 4 画	:▶ ≣	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antske Fokkens	Morphology		66 / 69

Automata Finite State Transducers

Summary

- Morphemes are minimal sign/meaning pairs
- Morphological analysis plays a role in reduction of lexicon size, unknown word recognition, etc
- Several meaning units can be mapped in one morpheme (multi-exponence)
- Phenomena such as reduplication, syncretism, allomorphism, and morphophonological processes make that morphemes are not necessarily easily recognizable
- FSM forms the standard (basic) technique for morphological analysis

		: • E	500
Antske Fokkens	Morphology		67 / 69

Bibliography I

Chomsky, Noam and Halle, Morris. 1968. The Sound Pattern of English.New York, USA: Harper and Row.

Crysmann, Berthold. 2006. Foundations of Language Science and Technology: Morphology.

http://www.coli.uni-saarland.de/~hansu/courses/FLST05/schedule.html. Accessed on the 14th of August 2008.

Crystal, David. 1997. The Cambridge Encyclopedia of Language. Cambridge, UK: Cambridge University Press.

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. The Hague, NL: Mouton.

Kiparsky, Paul. 1987. The Phonology of Reduplication.

Payne, Thomas E. 1997. Morphosyntax – a guide for field linguists. Cambridge, UK: Cambridge University Press.

Sproat, Richard. 1992. Morphology and Computation. Cambridge, USA. MIT Press.

 Antske Fokkens
 Morphology
 68 / 69