Foundations of Language Science and Technology: Morphology

Berthold Crysmann
crysmann@dfki.de
Overview

- Basic terminology
- Subdomains of morphology: inflection, derivation, compounding
- Morphological processes
- Morphophonology
- Finite State Morphology
Introduction

- **Morphology**
 - Subdiscipline of linguistics concerned with the internal structure of words

- **Major applications of morphology in computational linguistics**
 - Parsing of complex word forms into their component parts
 - *antidisestablishmentarianism*
 - anti+dis+establish+ment+arian+ism
 - Analysis of grammatical information encoded in word forms
 - *sings*
 - sing [PERSON 3, NUMBER singular, TENSE present]
Words

- **Notion of word is ambiguous**
 - Word form (surface form)
 - Abstract notion (lemma or citation form, typically found in dictionaries)

 e.g. bare/infinitival form for verbs, nominative singular for nouns

- **Lexeme**
 - Class of equivalent forms that represent a word in different syntactic contexts

 e.g. sing = \{sing, sings, sang, sung, singing\}
Morphemes

- **Morpheme**
 - Basic unit of morphology
 - Term introduced by structuralism
 - Abstract notion of a *minimal content-bearing unit*
 - Pairing of form and function
 - Surface realisation of abstract morphemes are called *morphs*

 e.g. English plural morpheme:

 [NUMBER pl]: -s, -es, -en, -0, ...

 boy+s, match+es, ox+en, sheep

- **Morphological analysis**
 - segmentation into basic units
 - classification of units according to function
Types of morphemes

- Free morphemes
 - In English or German, many morphemes can be used as independent words
 - e.g. boy, sing

- Bound morphemes
 - Cannot be used independently
 - -s [NUMBER pl] as in boys
 - Affixes are prototypical bound morphemes
Formatives

- Segmentable forms need not have a depictable meaning

 e.g. linking element in German compounds

 \[\text{Geburt+s+tag, Schwan+en+hals,}\]

- Forms without any identifiable meaning are called *formatives*

- Pseudomorphemes (“cranberry morphemes”)
 - Special case of formatives
 - Examples:
 - \text{cran+berry, rasp+berry} etc.
 - \text{re+ceive, con+ceive, per+ceive}
 - Segmentable part of complex form cannot be assigned a constant meaning
Areas of morphology 1

- Inflection (Formenlehre)
 - Marking of grammatical (=morphosyntactic) distinctions
 - Declination
 - Nominal categories (nouns, determiner, adjectives, pronominals)
 - Dimensions: case, number, gender, degree, definiteness
 - Conjugation
 - Verbal categories
 - Dimensions: Tense, aspect, mood, agreement
 - Distribution of forms conditioned by syntactic context
 - Inflectional marking by bound (synthetic) and free morphemes (analytic)

 gehen [TENSE past]: *ging*
 gehen [TENSE future]: *wird gehen*

- Word formation
Inflectional morphology - Paradigms

- Inflected forms of a lexeme can be organised in paradigms
- Inflectional features and their values define cells of a paradigm
- Cells are filled by the exponents of a morphological feature combinations

<table>
<thead>
<tr>
<th>Present</th>
<th>NUMBER</th>
<th>Past</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>singular</td>
<td>plural</td>
<td>singular</td>
</tr>
<tr>
<td>1.</td>
<td>dehn-e</td>
<td>dehn-en</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>dehn-st</td>
<td>dehn-t</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>dehn-t</td>
<td>dehn-en</td>
<td>3.</td>
</tr>
</tbody>
</table>

- Syncretism
 - Different feature combinations can be expressed by the same form
 - Syncretism can cut across inflectional dimensions

- Relation between form and function is m:n
 - Multiple exponence (cumulation)
 - Morpheme -e expresses person, number and tense distinction
 - Extended exponence: ge-dehn-t

Source: Berthold Crysmann 2006
Areas of morphology 2

- **Inflection**
- **Word formation**
 - **Derivation**
 - build complex words by combination of a free morphemes with bound morphemes

 e.g. $[[[\text{derive}]_V + \text{ation}]_N + \text{al}]_A = \text{derivational}$

 - Changes semantics
 - May change syntactic category

 - **Compounding**
 - build complex words by juxtaposition of free morphemes
 - Productive compounding implies infinite lexicon

 $[[\text{Flektion}]_N + \text{s}+[\text{morphologie}]_N = \text{Flektionsmorphologie} \ `\text{inflectional morphology'}$

 $[[\text{sale}] + \text{s}+[\text{man}] = \text{salesman}, \ [[\text{dish}] [\text{washer}]] \] = \text{dish washer}$

 - Compounds are referential islands
Morphological processes

- **Segmental processes**
 - Affixation
 - Modification
 - Substitution of segments (umlaut, ablaut, suppletion)
 - Subtractive morphology (deletion of segments)

- **Suprasegmental**
 - Stress
 - Tone
Affixation

- Recursive process
- Affixes are bound morphemes
- Affixes are positionally fixed with respect to the base
 - prefix
 - un+happy
 - suffix
 - happy+ly
- Root
 - Part of a morphologically complex form after all affixes are stripped
- Stem
 - Root + thematic vowel in inflectional morphology
- Base
 - Part of a morphologically complex form to which an affix can be added
 - A base may be simplex (i.e. a root) or complex (root + affixes)
Affixation

- Order of application is meaningful

 \[\text{in } [[\text{describe}] \text{ able}]]\]

- Words can have internal structure
- Morphotactics describes constraints on morpheme order
- Morphotactics can be determined by
 - word syntax
 - non-syntactic factors, e.g. lexical strata

 e.g.: \textit{non-impartial} vs. *\textit{in-non-partial}
Types of affixation processes

- Affixation
 - Constant string
 - Continuous base
 - Prefix
 - Suffix
 - Circumfix
 - Discontinuous base
 - Continuous affix
 - Infix
 - Discontinuous affix
 - Transfix
 - Copied string
 - Reduplication
Prefixation, Suffixation, Circumfixation

- Prefixation and Suffixation are crosslinguistically predominant affixation processes
- In English and German, most inflectional and derivational affixes are suffixes
- In Bantu languages, such as Swahili, prefixation is dominant
- Circumfixation can be described as simultaneous addition of pre- and suffixes
- Ex: German regular past participles

ge+arbeit+et `worked'
Infixation

- Infixes are affixes which are inserted into the base, thereby leading to discontinuous bases
- The infix itself is continuous
- Infixation is rare in European languages
- Infixation can be motivated by prosodic factors
 - e.g. Tagalog *um + sulat = s-*um-*ulat*, (vs. *um + aral = um-*aral*)
 - Avoidance of closed syllables (consonant-final syllables)
 - Prosodic conditioning of infixation extensively studied in Optimality Theory (McCarthy and Prince)
- Infixation can also be purely morphologically conditioned
 - e.g. Udi infixation (Harris 1997)

<table>
<thead>
<tr>
<th>Root</th>
<th>Transitive</th>
<th>Intransitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>box</td>
<td>bo-ne-x-sa</td>
<td>box-ne-sa</td>
</tr>
<tr>
<td>uk</td>
<td>u-ne-k-sa</td>
<td>uk-ne-sa</td>
</tr>
</tbody>
</table>

Source: Berthold Crysmann 2006
Transfixation

- Transfixation is an affixation where the segmental material of root and affix gets interleaved
 - i.e. both the root and the affix are discontinuous
- Transfixation is widely attested in Semitic languages, e.g. Arabic and Hebrew
- Ex.: forms of the Arabic root \(ktb \)

<table>
<thead>
<tr>
<th>Binyan</th>
<th>ACT (a)</th>
<th>PASS (u i)</th>
<th>Template</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>katab</td>
<td>kutib</td>
<td>CVVCVC</td>
<td>write</td>
</tr>
<tr>
<td>II</td>
<td>kattab</td>
<td>kuttib</td>
<td>CVCCVC</td>
<td>cause to write</td>
</tr>
<tr>
<td>III</td>
<td>kaatab</td>
<td>kuutib</td>
<td>CVVCVC</td>
<td>correspond</td>
</tr>
</tbody>
</table>

- Theoretically modeled by means of multidimensional representations (Autosegmental Phonology), associating consonantal and vocalic tiers to a CV skeleton
Transfixation

- Theoretically modeled by means of multidimensional representations (Autosegmental Phonology), associating consonantal and vocalic tiers to a CV skeleton
Modification

- Morphological process affects stem-internal segments
- Typical examples include “ablaut” and “umlaut” in German and English
- **Umlaut:**
 - Phonologically predictable segmental alternation (e.g. fronting in German):
 - a → ä, o → ö, u → ü
 - Umlaut in German is morphologically conditioned: e.g. *Futter* (sg)
- **Ablaut:**
 - Phonologically unpredictable segmental alternation
 - *gehen* – *ging* – *gegangen* vs. *sehen* – *sah* – *gesehen*
Subtractive morphology

- Process which marks morphological category by removing segments from the base
- Shape of the base cannot be predicted from the shape of the derived form
- Subtractive morphology presents severe foundational problem for morpheme-based theories of inflection and derivation
- Ex: Koasati

<table>
<thead>
<tr>
<th>Singular</th>
<th>Plural</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>pitaf+fi+in</td>
<td>pit+li+n</td>
<td>to slice up the middle</td>
</tr>
<tr>
<td>lasap+li+n</td>
<td>las+li+n</td>
<td>to lick something</td>
</tr>
<tr>
<td>acokcan:+ka+n</td>
<td>acokan+ka+n</td>
<td>to quarrel with someone</td>
</tr>
</tbody>
</table>
Suprasegmental marking

- **Stress shift**
 - English verb-noun derivation:
 - produce (V) – produce (N)
 - permit (V) – permit (N)
 - import (V) – import (N)
 - insult (V) – insult (N)
 - discount (V) – discount (N)

- **Tone**
 - Kanuri (North-eastern Nigeria)
 - lezè (subjunctive) – lezé (optative) 'gehen'
 - tussè (subjunctive) – tussé (optative) 'ruhen'
Reduplication

- Morphological process where (part of) the base is copied
- Often used to express categories such as plurality, iterativity, habituality etc.
- **Total reduplication**
 - entire base is copied, e.g. Indonesian
 - *orang* `man' – *orang orang* `men'
 - reduplication can interact with segmental changes, e.g. Javanese
 - *bali* `return' – *bola+bali* `return repeatedly/habitually'
- **Partial reduplication**
 - segmental material is partially copied, typically, a prosodic constituent, like a syllable or a foot, e.g. Yidin
 - *mulari* `initiated man'
 - *gindalba* `lizard'
- **Autosegmental Phonology** assumes affixation of CV templates and spreading (copying) of segments to skeleton slots
Morphophonology

- Morphological process can trigger phonological or graphemic alternations
- Phonological alternations at the juncture between morphemes are highly frequent (internal Sandhi)
- Sandhi can also occur at word boundaries (external sandhi)
- Morphophonological alternations
 - Assimilation
 - Homorganic nasal assimilation
 \(iN+possible = impossible\) [imp...]
 \(iN+complete = incomplete\) [iŋk...]
 - Voicing assimilation
 cat+s = [...ts]
 dog+s = [...gz]
 - Epenthesis: \(wish+s = wishes\) [wišız]
 - Deletion
- Graphemic alternations
 - \(y + s \sim ies\)
Harmony processes

- Phonological processes can also apply long-distance
- Harmony processes require identity of segments (typically vowels) with respect to some feature

E.g. Finnish front/back vowel harmony

- [back +] vowels: a, u, o
- [back -] vowels: ä, y, ö
- neutral vowels: i, e

 taivas (NOM) – taivas+ta (PART) – *taivas+tä
 lyhyt (NOM) – lyhyt+tä (PART) – *lyhyt+ta

- Number of interacting harmony processes highly restricted
 - typically 1, at most 2 (Warlpiri)
 - Low number may be correlated with set of distinct features (Koskenniemi)

Source: Berthold Crysmann 2006
(Morpho)phonology in Generative Grammar

- First formalisation of phonological rule systems goes back to Chomsky & Halle (1968)'s SPE model
- Phonological rules were context-sensitive rewrite rules of the general form:
 \[a \rightarrow b / v _ w \]
- Generative model derives surface from by successive rule application to an abstract underlying form
- Rules were assumed to be ordered
- Johnson (1972) observed that the full generative power was hardly ever used in actual phonological descriptions
Automata - NFAs

- **Definition**
 - A nondeterministic finite state automaton is a quintupel $A = (Q, E, \delta, q_0, F)$, with
 - Q: a finite set of states
 - Σ: a set of input characters (an alphabet)
 - $q_0 \in Q$: an initial state
 - $F \subseteq Q$: a set of final states
 - δ: a transition relation $Q \times \Sigma^* \times Q$

- **Worst case complexity of NFAs is exponential to word length**
NFAs: Example automaton

- klein + er +es
NFAs: Example automaton

- klein + er + es
NFAs: Example automaton

- klein + er +es

Failure
NFAs: Example automaton

- **klein** + **er** + **es**

Backtracking
NFAs: Example automaton

- klein + er +es
NFAs: Example automaton

- klein + er +es
NFAs: Example automaton

- klein + er +es

Backtracking
NFAs: Example automaton

- klein + er + es
NFAs: Example automaton

- klein + er +es

Source: Berthold Crysmann 2006
NFAs: Example automaton

- klein + er +es

Backtracking
NFAs: Example automaton

- klein + er → es
NFAs: Example automaton

- klein + er + es

At last!
Automata - DFAs

Definition

- A deterministic finite state automaton is a quintupel $A = (Q, E, \delta, q_0, F)$, with
 - Q: a finite set of states
 - Σ: a set of input characters (an alphabet)
 - $q_0 \in Q$: an initial state
 - $F \subseteq Q$: a set of final states
 - δ: a transition function $Q \times \Sigma \rightarrow Q$

For every NFA there is always an equivalent DFA (Hopcroft & Ullman 1979)

- Algorithm for determinisation involves
 - expansion of edges consuming more than 1 input character
 - elimination of ϵ-transitions (insertion of additional edges)
 - construction of power automaton (recursively combine states reached by same input symbol into new state)
- Worst case complexity for DFAs is linear
NFA to DFA conversion: expand multiple character transitions
NFA to DFA conversion: ε-elimination
NFA to DFA conversion: construct power automaton
Lexicon

- NL lexica can be efficiently encoded as letter trees (tries)
- Final states can be associated with featural annotations
- Lookup cost is proportional to string length (linear)
Lexicon

- Stem lexica can be combined with suffix lexica using continuation classes
- Stem and affix lexica can be compiled (concatenation) into a single automaton
Finite state transducer

- FSTs are finite state machines that accept languages of symbol \(\text{pairs m:n} \)
- By convention, left hand symbols correspond to the lexical tape, right hand symbols to the surface tape
- Kay & Kaplan (1983) suggest cascaded \textit{finite state transducers (FSTs)} as a model for SPE-style phonology
- Cascade of transducers can be composed into a single FST
- Resulting FST can be minimised
- In contrast to FSAs, FSTs cannot always be processed deterministically, unless when running as an acceptor
 - Ex: \(((x:a)\cdot a:a) \mid ((x:b)\cdot b:b)\) running as a generator
- Solution: compose phonological FST cascade with lexicon

Source: Berthold Crysmann 2006
Example

- An FST for English $y+s \sim ies$

```
Source: Berthold Crysmann 2006
```
Koskenniemi's Two-Level Morphology

- Two-level model of morphology employs parallel transducers instead of cascades
- Model directly relates lexical tape to surface tape
- Lexicon encoded as FSAs with continuation classes
- Parallel transducers efficiently processed even without composition
- Rule interaction must be taken care of in individual transducers
Rule interaction

- **Example from Arabic (simplified)**
- **Rules:**
 - Glide deletion: \(\{w, y\} \rightarrow 0 / V _ V\)
 - Vowel assimilation: \(V \rightarrow i / _ i\)
- **Application: Glide deletion feeds vowel assimilation**
 - Example: \(quwila \rightarrow quila \rightarrow qiila\)
- **FST cascade: Assimilation**
 - State: \(V:i \quad i:i \quad =:=\)
 - 1: 2 1 1
 - 2: 2 1 0
- **Two Level: Assimilation**
 - State: \(V:i \quad i:i \quad =:0 \quad =:=\)
 - 1: 2 1 1 1
 - 2: 2 1 2 0
- **Two level rule must explicitly refer to deleted segments in assimilation automaton**
Root & Pattern Morphology

- Kay 1987 proposes finite state approach to Arabic
- Transducer involves 4 tapes operating parallel
- Surface tape and CV tape are always advanced together (step lock)
- CV tape controls alignment of input tape with root and vowel tapes
- Beesley (1989) uses different lexica for consonantal roots and vocalised CV templates
Reduplication

- Reduplication goes well beyond finite state machines
- However:
 - at least partial reduplication can be approximated
 - enumerate all affix shapes derivable from the shape of (a portion of) the base
 - ensure that affix segments are matched to the segments of the base
- Antworth (1990) implements a finite state machine for Tagalog CV-reduplication
 - *pili* \(\text{pi+pili} \) `choose`
 - *tahi* \(\text{ta+tahi} \) `sew`
 - *kuha* \(\text{ku+kuha} \) `take`
- Identity of vowel and consonants are implemented as separate machines, which are then intersected
- Sproat (1992) estimates that application to more complex reduplicants (e.g. Warlpiri CV(CC)V) will lead to a machine with more than 14,000 states
Morphological processing systems

- **Inflection:**
 - lemmatisation/stemming
 - extraction of grammatical (morphosyntactic) features (preprocessing for parsing)
 - reduction in lexicon size (1:2 for English, 1:5 for German, >1:200 for Finnish/Turkish)
 - Finite state technology is state of the art

- **Derivational morphology**
 - Semi-productivity and semantic opaqueness still pose problems
 - Rule-based approaches may suffer from overgeneration
 - Lexicalisation of complex forms useful

- **Compound analysis**
 - indispensable for languages with productive compounding (e.g. German)
 - Issues: bracketing