Brückenkurs 2006

Introduction to Psycholinguistics

Pia Knoeferle & Matthew W. Crocker

Department of Computational Linguistics, Saarland University

October 13, 2006

Overview

- □ What is psycholinguistics?
- □ A brief history of psycholinguistics
- □ Core issues: Modularity
- □ Language processing
 - Incrementality
 - Ambiguity in language
 - Language-vision interaction
- □ Experimental design and analysis

Some definitions

- Study of the psychological / neurobiological factors that enable us to acquire, use, and understand language"
 - □ Language acquisition
 - □ Language production / comprehension
- "To understand and model the processes that underlie the human capacity to process language"
 - How does the human language processor work?
 - □ How is it realized in the brain?
 - How is linguistic knowledge represented in the brain?
 - □ Where does our capacity for language emerge from?

© P. Knoeferle

3

A brief history

□ A brief history (see Saffran, 2003)

In Greece & Rome, capacity for language was ascribed to the tongue

- Dependence Phrenology (Gall, ca. 1800):
 - Bumps on the skull taken to reflect areas of enlargement in the brain
 - Substitution State of the set of the set
- □ Empiricism of the 18th/19th century
 - Study of aphasia (partial or total loss of the ability to articulate ideas or comprehend spoken or written language) following brain damage

Organization of language in the brain

- □ Paul Broca (physician, ca. 1860)
 - Localization of functions in the cerebral cortex
 - □ M. Leborgne, suffered a stroke, only uttered one monosyllable
 - □ Autopsy: area of damage in left inferior frontal lobe (Broca's area)
 - Broca's area lies anterior to area of the motor cortex that transmits commands to face muscles, tongue, and larynx

Broca's aphasia

- Sparse speech, nonfluent
- Intonation and stress patterns are deficient
- Lack of grammatical structure
 - □ Sentence construction is poor
 - □ Disjointed words
 - Omitting function words and inflections
 - ⇔ E.g., Son ... University ... Smart ... Boy ... Good ... Good ...

© P. Knoeferle

5

Organization of language in the brain

- □ Carl Wernicke (German physician)
 - Damage to an area of the left superior temporal lobe (part of auditory association cortex, and next to primary auditory cortex)
 - Result: Loss of language comprehension
 - Wernicke's aphasia
 - Deficits in comprehension and repetition
 - Speak fluently but content is often incorrect
 - Solution of neologisms
 - Superior temporal area: where auditory word images are stored
 - Proposed a connection between Wernicke and Broca
 - ➡ Example (Saffran, 2003, Appendix 1)
 - I...] I can't recall the word that I can't thay. With the French, you know, uh, what is the name of the word, God, public serpinz they talk about, uh, but I have had that, it was ryediss, just before the storage you know, seven weeks, I had personal friends that, that, I would cook an' food the food and serve fer four or six mean for an evening.

Organization of language in the brain

http://www.tbts.org/itemDetail.asp?categoryID=295&itemID=16377

□ Frontal lobe

- Separated from parietal lobe by central sulcus/rolandic fissure
- Contains Broca's Area
 - Damage can result in impaired language production

Temporal lobe

Separated of frontal and parietal lobes by the lateral/sylvian fissure

Servicke's area

 Damage can result in problems processing auditory language

Occipital lobe

- Visual processing
 - Damage can impair processing of written language

© P. Knoeferle

7

Human language processing: Function

□ What does it do?

Comprehension: Maps from "sound to meaning"

- □ speech/orthography to words
- words to structures
- □ structure to meanings

➡ Production: Maps from "message to speech"

- Meaning to grammatical encoding
- □ Phonological encoding
- Articulation

Competence versus Performance

Competence: Knowledge of Language ⇒ Linguistic theories at all levels □ Phonetics/phonology, morphology, syntax, semantics ⇒ Rules and representations
Performance: How Language is Processed → Use of Knowledge of Language □ Processes for comprehension and production

➡ Architectures and Mechanisms

© P. Knoeferle

9

Why Distinguish Competence & Performance?

- Sometimes what we do differs from what we know
- Production: we say things we know are wrong
 Spoonerisms: "Mental lexicon" spoken as "Lentil Mexican"
 Agreement: "The friend of the two girls are laughing"
- Comprehension: we can't understand things we know are ok
 - Centre embedding:
 - □ "The mouse that the o
 - Garden paths:

□ "The horse raced pas

More Spoonerisms

- A lack of pies (A pack of lies)
- Wave the sails (Save the whales)
- Plaster man (Master plan)
- Bottle in front of me (Frontal Lobotomy)
- Rental Deceptionist (Dental Receptionist)
- Flock of bats (Block of flats)
- Chewing the doors (Doing the chores)

Speech Processing Model (Dijkstra & Kempen, 1993)

The Modularity Issue

Is language distinct from other other cognitive processes?

➡ e.g. vision, smell, reasoning …

Do distinct modules exist within the language processor?

⇒ e.g. word segmentation, lexical access, syntax ...

□ What is a module anyway!?

- □ What does "distinct" mean:
 - Representational autonomy
 - E.g. phonological representations differ from syntactic representations
 - Possibly interactive processes
 - Procedural autonomy
 - □ E.g. lexical access versus syntax
 - Possibly shared representations
- How are any such "distinct subsystems" for language processing organised? How do they interact?
 - Does organisation affect possible mechanisms?
 - Theoretical, computational and empirical arguments for and against 'modularity'?

© P. Knoeferle

13

Fodor's Modularity

Summary

- Definition of 'psycholinguistics'
- Brief history of early days in psycholinguistics
 Language organization in the brain
- Function of language processing
 Comprehension and production
- Competence vs. performance and reasons for differentiating between them
- □ Modularity issue
 - Encapsulated modules might account for the rapidity of language processing

© P. Knoeferle

15

Human Language Processing

- We understand language incrementally, word-by-word
 How do people construct interpretations?
- We must resolve local and global ambiguity
 How do people decide upon a particular interpretation?
- Decisions are sometimes wrong!
 - ➡ What information is used to identify we made a mistake?
 - ➡ How do we search for an alternative?

Real-time language processing

- Speech streams include no discrete boundaries to indicate where one word ends and another begins.
- We understand stammering non-fluent politicians and non-native speakers. Incomplete sentences are no problem for us.
- We deal with ambiguity all the time without breaking down. Computer parsers often maintain thousands of possible interpretations.
- We have a vocabulary of about 60,000 words. We access somewhere between 2-4 words/second (error rates around 2/1000 words)
- We understand speech even faster than we can produce it. We are so fast, we can even finish each others sentences.

© P. Knoeferle

17

Investigating real-time language processing

- How do we know people understand language incrementally?
 - Speech shadowing task: the participant repeats back speech as he hears it
 - □ Close shadowers (~10% of people) can repeat what they hear at a delay of only 250 ms (normal ~500 ms)
 - □ 250 ms = 1 syllable, i.e. close shadowers are processing the incoming material at the level of individual syllables

Investigating real-time language processing

- Ambiguity has often been exploited to investigate claims about language comprehension
- Types of ambiguity
 - ➡ Lexical ambiguity
 - Structural ambiguity
 - Word order and grammatical function
 - □ Thematic role ambiguity
 - Attachment ambiguity
 - Referential ambiguity
 - Local/global ambiguity
 - Solution ⇒ Multiple ambiguity

© P. Knoeferle

19

Ambiguity

□ Lexical (at word level)

- ➡ Word category
 - □ E.g., verb/noun: walk, praise, call, phone

➡ Meaning

- □ Homographs: same written form but different meaning
 - *r*⇒*E.g., Lauf* (Klavier, Joggen), *Geschirr* (Pferd, Porzellan)
 - Seter remembered the ball which he had lost yesterday.
 - Seter remembered the ball which he had gone to last week.
- □ *Homophones:* same pronunciation, different in meaning ⇒ *Tale/tail; bear/bare*;

□ Structural ambiguity

- ⇒ Word order: subject-object (SO) vs. object subject (OS)
 - Die Mutter grüßt die Tante.
 - Word order variation: Subject-object and object-subject are grammatical
 - Case ambiguity: for feminine nouns NOM and ACC case are identical

Thematic role ambiguity

- □ The princess called by the king was talking to her nurse.
- □ The first noun phrase is both
 - ⇒ Agent (main clause *The princess was talking to her* nurse)
 ⇒ Patient (reduced relative clause *called by the king*)

© P. Knoeferle

21

Ambiguity

- □ Structural ambiguity
 - Attachment ambiguity
 PP-attachment

Ambiguity

□ Referential ambiguity

⇒ The horse was beautiful.

➡ The horse next to the tree was beautiful.

23

© P. Knoeferle

Ambiguity

□ Local versus global ambiguity

Disambiguating information

- □ Information that resolves a local ambiguity
 - ⇔ Die Frau grüßt den Mann (local)
 - ⇔ Die Frau grüßt die Tante (global)

□ Multiple ambiguity (more than two structural analyses)

- ➡ The girl hit the boy with the book on the hill.
 - The book was an instrument for hitting the boy or the boy had the book
 - □ The hill was either the location of the book or of the hitting

Against modularity: Tanenhaus et al., 1995, Science

Summary

- People process language incrementally
- □ They understand language efficiently and rapidly
 - And this despite language being rich in ambiguity
 - □ Lexical, structural, referential
 - □ Sometimes the ambiguity is local, sometimes global
 - E.g., rapid use of visual referential context to resolve local structural ambiguity (evidence against strict modularity)

- □ We have just heard about the Tanenhaus study ...
- The study tested whether a visual referential context can influence the initial structuring of an utterance
- So what if we wanted to test a theory ourselves we could conduct an experiment
 - Experiment (contrasted with non-experiment: introspection, data collection)
 - Some definitions of what an experiment is
 - Systematic observations of a specific behaviour under controlled circumstances
 - Set of actions and observations, performed to verify or falsify a hypothesis or research a causal relationship between phenomena
 - She act of conducting a controlled test or investigation

© P. Knoeferle

27

Experimental design

□ Experimental designs

- ➡ Example
 - □ Effects of preparation on using hedges versus assertions

	Hedging expressions	Assertive statements
Prepared	(1)	(1)
Unprepared	(2)	(2)

- All variables can be freely manipulated
- Participants can randomly be assigned to the experimental conditions
- Avoids systematic effects of other (correlated) variable

Experimental design

Experimental design

We could, for instance, use what we have heard so far about ambiguities to test some claims about incremental syntactic structure building

□ Research question

- How does the comprehension system build a syntactic analysis of a sentence?
- ➡ Theory1 (simplest-first)
 - □ We follow strategies (e.g., choose the simplest analysis first)
- ➡ Theory2
 - □ We do not chose the simplest analysis first

□ Operationalize

If simplest-first theory is true, people should experience processing difficulties when simplest analysis is disconfirmed

Hypotheses

- ➡ H1 (Experimental hypothesis)
 - Processing difficulty when simplest analysis disconfirmed
- ➡ H0 (Null hypothesis)
 - □ No processing difficulties when simplest analysis disconfirmed

Design

- Independent variable(s)
 - What we manipulate
- Dependent variable(s)
 - □ What we measure

© P. Knoeferle

31

Experimental design

- Design
 - ➡ 1 Factor design:
 - Sector 1: Sentence type (2 *levels*: simple (a) vs. complex (b) analysis)
 - (a) The woman greeted the man and smiled.
 - (b) The woman greeted by the man smiled.

Design/materials issues

□ Match the length and frequency of the words in your 2 conditions

□ Confounds (e.g., differences in plausibility)? -> Counterbalancing

 Lexical decision, naming, window-methods in selfpaced reading (SPR), eye tracking, neuropsychological methods

⇒ Lexical decision

- (a) The woman greeted the man and smiled.
- (b) The woman greeted by the man smiled.
- ➡ Pros/cons of using this method?

Yes No ed. woman

© P. Knoeferle

33

Methods

- Self-paced reading:
 - Present a sentence one word/sentence region at a time on the screen
 - After reading that word, people click a button to see the next word(s)
 - S Pros
 - □ Fairly incremental per-region reading times

Show the second sec

- □ Only total reading times in a region (i.e., no fine-grained measures)
- You only see one region at a time: artificial presentation that does not allow you to re-read earlier text

Eye tracking

- ➡ Pros
 - □ Incremental, per-region reading times
 - □ Fine-grained distinctions: first pass (time spent in a region when first entering it, and before leaving it), and total times
 - □ The entire sentence is presented, allowing people to re-read text
- Show the second sec
 - □ No direct evidence of neural activation, for instance

Statistical tests

- Once we have designed the experiment, created the materials, and run the study, we want to analyse the recorded data: statistics
- □ In our study we had 2 conditions
- We want to ascertain whether any differences in reading times between the MC and the RR condition are systematic or unsystematic
 - Systematic variation: result of experimental manipulation
 E.g., MC vs RR sentence condition
 - Subsystematic variation: due to random factors: e.g., age, gender
- Test statistics (e.g., F-statistic, Analysis of Variance: ANOVA)
 - Discover how much variation there is in performance
 - Between the second state of this variation is systematic versus unsystematic
 - S Is there more variation than without the experimental manipulation?

© P. Knoeferle

35

ANOVA

- An ANOVA tells you whether
 - Differences between conditions are due to your manipulation
 - Due to unsystematic variation
- The ANOVA can help us analyse differences between means in more complicated designs (e.g., with 2 or more factors)
 - ➡ The result of an ANOVA analysis is a F-value
 - Ratio of the variance due to your experimental manipulation over unsystematic variation
 - A high F-value indicates a lot of the variation results from your manipulation

Summary

- □ Psycholinguistics deals with language processing
- A brief history of psycholiguistics
 Broca's and Wernicke's aphasia and language areas in the brain
- □ Competence vs. performance (comprehension & production)
- □ Core issues: Modularity ⇒ Fodor (1983)
- □ Incrementality of comprehension
- Ambiguity in language and its uses in psycholinguistics
 Lexical, syntactic, referential ambiguity; global vs. local;
- □ Experimental design and analysis

© P. Knoeferle