
Why cats smooth
A discussion of the basic of smoothing with occasional LOLcat pictures

Asad Sayeed

COLI, Uni-Saarland

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 1 / 32

Q: How many of you ever recall
hearing the phrase “Why cats

smooth”?

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 2 / 32

A: Probably none of you, but then,
you’re all German native speakers.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 3 / 32

A: But you may have heard of:

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 4 / 32

Q: So if your brain were a language
model trained in trigram counts,

what would the probability of “why
cats smooth” be?

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 5 / 32

A: Probably zero, right?

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 6 / 32

N-grams

Let’s check some n-gram counts.

Google n-grams corpus.

Has up to 5-grams.

Includes punctuation as a token.

Text files with counts searchable via zgrep.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 7 / 32

A: Yep, zero.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 8 / 32

Zero counts

But that can’t possibly be right!

I was able to say it.

Clearly its probability in this universe is non-zero.

As soon as these slides go up on the internet (do they do that here?),
the trigram count in Google’s index is going to change.

So a model that tells me that this can NEVER OCCUR—due to the zero
count—is certainly wrong.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 9 / 32

Zero counts

We know too little about the universe:

We don’t know what model *actually* generated “why cats smooth”.

We’re not going to find out any time soon (or half of COLI will be
out of work).

We need a way to produce a good approximation, so that our models
can at least handle some form of “novelty”.

We generally call this smoothing. Whether it’s correct or not, it’s another
matter.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 10 / 32

A problem?

Just to remind you, why is this a problem in practical terms? Examples:

Machine translation: need to translate phrases never seen before into
phrases never seen before . . .

Information retrieval: make a “best guess” at what a new query
intended . . .

etc. . .

People are creating new language all the time. N-gram models will
never be large enough.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 11 / 32

Unsmoothed probabilities

We need a place to start: maximum likelihood estimates (MLEs):

MLE for unigrams

P(wi) =
ci
N

wi - the word

ci - the unsmoothed count of wi

N - the total number of tokens in the corpus

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 12 / 32

Unsmoothed probabilities

Obvious extension to bigrams

MLE for bigrams

P(wi |wi−1) =
C (wi−1wi)

C (wi−1)

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 13 / 32

Unsmoothed counts

Too hard to do a cube for now, so let’s stick to unigrams and bigrams.
From Google n-grams:

¡s¿ why cats smooth paint
¡s¿ N/A 62101035 ? ? 2116305

why N/A 41664 9296 156 3496
cats N/A 1015 30441 ? 2943

smooth N/A ? 53 ? ?
paint N/A 202 ? ? 28139

UNIGRAM 95119665584 101568835 4720992 14040158 12272214

¡s¿ means “start” of sentence. (there’s an end symbol as well)
TOTAL UNIGRAM COUNT: 1024908267229

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 14 / 32

Add-one smoothing

Intuition:

Instead of assuming that unseen n-grams have zero counts, let’s pretend
that they’ve been seen exactly once.

Consequences:

Every unseen n-gram has exactly the same probability. Can’t remotely
be true, but whatever.

Colourless green ideas sleep furiously.

We add 1 to everything else — fairness to what we HAVE seen.

This is also called “Laplace” smoothing.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 15 / 32

Add-one smoothing

For unigrams:

Add-one adjusted probability

P∗
Laplace(wi) =

ci + 1

N + V

V is the vocabulary size, since we’re increasing the token count by 1 per
vocab item.
Alternatively, what does this do to the counts?

Add-one adjusted unigram counts

c∗i = (ci + 1)
N

N + V

We don’t just “add one”—we preserve the relative proportions through
normalization.
Then we can divide by N to get to get the same probability.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 16 / 32

Add-one smoothing

We can do this for bigrams by a simple extension:

Add-one adjusted bigram probability

P∗
Laplace(wi |wi−1) =

C (wi−1wi) + 1

C (wi−1) + V

And for the counts:

Add-one adjusted bigram counts

C ∗(wi−1wi) = [C (wi−1wi) + 1]
C (wi−1)

C (wi−1) + V

The same structure and principle, really.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 17 / 32

Add-one smoothing

Add-one smoothing is not typically used.

It’s very aggressive!

Let’s do a couple from our cat example.

It “steals” too much probability mass from things we’ve actually seen.

Not all hapax legomena are equally likely.

There are better ways to do it.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 18 / 32

Discounting: an interlude

Before we move on. . . there’s another way to look at add-one: in terms of
a discount.

Add-one discount formula

dc =
c∗

c

This tells us how much we “stole” from a word with original count c in
order to give to the unseen forms.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 19 / 32

Good-Turing discounting

In add-one smoothing:

We pretend we’ve seen unknown n-grams once.

We don’t take into account what effect it will have on the other
n-grams.

We compensate for it in a VERY crude manner.

We can do better:

We can START by estimating how likely it is we’re going to see
something new.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 20 / 32

Good-Turing discounting

Insight

The number of things we’ve never seen can be estimated from the number
of things we’ve seen only once.

But THEN, that means that we have to steal probability from everyone
else.

How to do that fairly?

We need to reestimate the probability of everything by the same
principle.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 21 / 32

Good-Turing discounting

Key concept: frequency of frequency.

Nc — how often n-grams of frequency c appear in the corpus.

Nc =
∑

x :count(x)=c

1

Then we can compute revised counts for everything.

c∗ = (c + 1)
Nc+1

Nc

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 22 / 32

Good-Turing discounting

So how do we get the probability of missing items?

P∗
GT (count(w) = 0) =

N1

N

Where N is the total number of tokens.
(Jurafsky and Martin leave the proof as an exercise for the reader, and so
will we.)

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 23 / 32

Issues with Good-Turing

Some things to note:

Assumes that the distribution of each bigram is binomial.

If you have a vocab V , then the number of bigrams is V 2, so what
happens to OOV words?

What happens when we don’t know Nc+1?

We have to smooth out the frequency of frequency counts!

We don’t necessarily discount things where the count is big: probably
reliable.

But everything must sum to 1!

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 24 / 32

So far we’ve focused mostly on bigrams.
But what about bigger “grams”?

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 25 / 32

Higher-order n-grams

What about “why cats smooth”?

Not frequent enough to appear in Google n-grams.

But maybe the bigrams will help us: “why cats” and “cats smooth”.

And even if bigrams don’t help us, maybe some other combination will get
us a more realistic estimate.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 26 / 32

Interpolation

So what we want to find is P(wn|wn−2wn−1) — that’s the definition of the
probability of a trigram.

Linear interpolation

P̂(wn|wn−2wn−1) = λ1P(wn|wn−2wn−1)

+λ2P(wn|wn−1) + λ3P(wn)

Then we just need to learn the λ weights (by EM or any other linear
regression trick).
We can also make the weights context-dependent by making them relative
to bigrams.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 27 / 32

Backoff

An even better way: Backoff
For example, Katz (haha!) backoff.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 28 / 32

Katz backoff

. . . but that’s kind of ugly-looking. What it’s really saying is that:

Use the discounted weight if the count of the n-gram in question is
acceptably large.

If not, use the n-minus-1-gram’s count, adjusted by a special α factor
that adjust the count to include the mass you lost by excluding one
word.

You calculate THAT using all the n-minus-1-grams that involve the
word you dropped.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 29 / 32

Backoff

The whole problem is, how to make the
probabilities sum to 1.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 30 / 32

Practical considerations

Of course, we don’t ever do this ourselves if we can help it.

SRILM

CMU toolkit.

. . .

And, of course, we should ask ourselves if an n-gram model is really
appropriate for our problem.

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 31 / 32

Not always true. . .

Asad Sayeed (COLI, Uni-Saarland) Why cats smooth 32 / 32

