



# Language Technology II: Natural Language Dialogue

# Dialogue Phenomena (2)

Ivana Kruijff-Korbayová ivana.kruijff@dfki.de

#### **Dialogue Acts**

## **Dialogue Acts**

- the speaker in a conversation (typically) has a certain intention, a purpose, a goal → the speaker performs a communicative act
- Dialogue acts evolved from speech acts
- Speech act theory: do things with words (Austin 1962; Searle, Davis...)

# **Speech Act Theory**

- What speakers "do" by utterances:
  - constatives: utterances used to make true/false statements or assertions
     The snow is green.
  - performatives: utterances used to change the world I name this baby Jonathan
    I chisten this ship "Queen Mary"
    I promise I'll never do this again
    I bet it'll rain this evening
    I declare war on Liliput.
    I apologize.
    I object.
    I warn you.

## **Speech Act Theory**

- Constatives vs. performatives
- BUT:
  - performatives cannot be false, but they can fail to do things
  - some sentences are explicitly performative, others can be implicitly so
  - Apparently performative sentences need not be used as a performative at all
  - an utterance can be both constative ("truth-bearer") and performative ("action-performer")
  - → performatives are not a special class of sentences; constatives and performatives are not necessarily disjoint phenomena; the performative/constative dichotomy does not really exist; both are special cases of **illocutionary acts**

# Speech Act Theory

- Utterances are multi-dimentional acts that affect the context
  - Locutionary act: the act of uttering the words with their semantic content; saying something
  - Illocutionary act: the communicative act the speaker performs in saying the words (e.g., make a statement; request something; promise something; etc.) --> speech acts
  - Perlocutionary act: the act that occurs as a result of the utterance, the effect on the audience (e.g., making someone laugh, scared, convinced, pleased; etc.)

#### **Speech Acts**

| Assertive    | S commits to P being<br>the case          | Comment,<br>suggest, swear,<br>boast, conclude | H considers<br>committing to P<br>being the case |
|--------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Directive    | S attempts to get H<br>do X               | Ask, order,<br>request, beg,<br>invite, advise | H considers doing<br>X                           |
| Commissive   | S commits to future<br>course of action X | Promise, plan,<br>vow, bet, oppose             | H expects S to do<br>X                           |
| Expressive   | S expresses<br>psychological state T      | Thank, apologize,<br>welcome, deplore          | H accepts T                                      |
| Declarations | S changes world                           | Resign, name, fire                             | H accepts new<br>state                           |

- How do we decide what DA a user input is, e.g., statement vs. info-request
- At first glance, this looks simple
  - Different syntax:
    - Yes-no-questions have subj-verb inversion
    - Statements have declarative syntax
    - Commands have imperative syntax
- However, the mapping between surface form and illocutionary act is not one-to-one

- For example, what looks like a yes/no question Can you give me a list of the flights from A to B
   Can be a polite form of directive or request Please give me a list of flights from A to B
- What looks like a statement

And you said you wanted to travel next week

Can actually be a question, used to verify sth. (but, intonation!)

- Another example of "indirectness":
  - A: That's the telephone.
  - B: I'm in the bath.

A: OK.

• Can be paraphrased as follows:

A requests B to perform action (answer phone)

- B states reason why he cannot comply (in bath)
- A undertakes to perform action (answer phone)

- Idiom-based model:
  - Literal meaning (direct speech act)
  - Idiomatic meaning (indirect speech act)

the grammar would list idiomatic meanings for each construction, e.g., Can you X? would have request as one possible meaning

 Inferential model: indirect speech acts arrived at by inference

# Automatic DA Recognition

- This is one of the tasks of the dialogue management module (see next lecture)
- Plan-based interpretation
  - Essentially the inference model, differences lie in amount and depth of actual reasoning
  - Symbolic
  - Requires hand-coding and domain-knowledge
- Cue-based recognition
  - Essentially derived from the idiom model
  - Using a combination of utterance features and context features (supervised machine learning methods)
  - Requires hand-annotated data
- Machine learning!

# Dialogue Acts/Moves

- Generalization of speech acts to conversational functions of utterances at various levels
- Various taxonomies, typically tuned for a specific task or domain
- Attempts at reusable schemes:
  - Conversation acts (Traum and Hinkelman 1992, Traum 1994); DAMSL (1997); MATE/DATE (2001); DIT++ (2005; 2010); LIRICS (2007)
  - ISO International Standard 24617-2 (July 2010) http://semantic-annotation.uvt.nl/

# **Conversational Acts**

- Extension of speech acts theory (Traum 1994)
- Dimensions:
  - Turn-taking
  - Core speech acts
  - Grounding acts
  - Argumentational acts

## **Grounding Acts**

# **Grounding Acts**

- Discourse Unit (DU): unit of content to be grounded (cf. Clark's contribution)
- what is the function of utterance U w.r.t. the grounding of a DU<sub>i</sub>?

$$DU_{i}:$$

$$S \xrightarrow{Initiate(I, U_{k}, DU_{i})} (1) \xrightarrow{Acknowledge(R, U_{k}, DU_{i})} (F)$$

(1) 1:A: Move the boxcar to Corning
2:A: and load it with oranges
3:B: OK

*Init(A,1,DU1) Cont(A,2,DU1)* 

Ack(B,3,DU1)

# **Grounding Acts**

| Label                 | Description                             |  |
|-----------------------|-----------------------------------------|--|
| initiate              | Begin new DU, content separate from     |  |
|                       | previous uncompleted DUs                |  |
| continue              | same agent adds related content to open |  |
|                       | DU                                      |  |
| acknowledge           | Demonstrate or claim understanding of   |  |
|                       | previous material by                    |  |
|                       | other agent                             |  |
| repair                | Correct (potential) misunderstanding of |  |
|                       | DU content                              |  |
| <b>Request Repair</b> | Signal lack of understanding            |  |
| Request Ack           | Signal for other to acknowledge         |  |
| cancel                | Stop work on DU, leaving it un-         |  |
|                       | grounded and ungroundable               |  |

(Traum 1998)

#### **Adding Self-Repair**

• Self-repair (of DU<sub>i</sub> by I):



(2) 1:A: Move the boxcar to Bath 2:A: I mean, Corning 3:B: OK Init(A,1,DU1) Repair(A,2,DU1) Ack(B,3,DU1)

#### **Adding Cancelation**

Abandoning of DU, by I:



(3) 1:A: Move the boxcar to Bath 2:A: and load it with oranges 3:B: OK 4:A: Eh, no, forget that. Init(A,1,DU1) Cont(A,2,DU1) Ack (B,3,DU1) Canc(A,4,DU1)

## Adding Other-Repair

Other-repair and repair-request (of DU; by R):



#### **Other-Repair Example**

(4) 1:A: Move the boxcar to Bath 2:B: To Corning

3:A: Oh, sure.

- (5) 1:A: Move the boxcar to Bath 2:B: Bath?
  - 3:A: Oh, Corning.

4:B: OK

Init(A,1,DU1) Repair(B,2,DU1) ≈ Init(B,2,DU2) Ack (A,3,DU2)

Init(A,1,DU1) ReqRepr(B,2,DU1) ≈ Init(B,2,DU2) Ack(A,3,DU2) Repair(A,3,DU1) Ack (R,4,DU1)

### **Recursive Embedding**

- Other-repair is itself an embedded DU<sub>i+1</sub>
  - Repair(R,  $U_k$ ,  $DU_i$ )  $\approx$  Init(I,  $U_k$ ,  $DU_{i+1}$ )
  - ReqRepair( $R, U_k, DU_i$ )  $\approx$  Init( $I, U_k, DU_{i+1}$ )



I. Kruijff-Korbayová: Grounding (Traum

#### **Recursive Embedding**

Other-repair is itself an embedded DU<sub>i+1</sub>
 Repair(R,U<sub>k</sub>,DU<sub>i</sub>) ≈ Init(I,U<sub>k</sub>,DU<sub>i+1</sub>)
 ReqRepair(R,U<sub>k</sub>,DU<sub>i</sub>) ≈ Init(I,U<sub>k</sub>,DU<sub>i+1</sub>)



#### More Repair (Requests)

• Other-repair and repair-request (of DU; by I/R):



## Other-Repair (Request) Example

(6) 1:A: Move the boxcar to Corning 2:A: and load it with pineapples 3:B: OK 4:A: I mean, oranges. 5:A: OK.

(7) 1:A: Move the boxcar to Corning 2:A: and load it with pineapples 3:B: OK. 4:B: Pineapples? 5:A: I mean, oranges. 6:B: OK. Init(A,1,DU1) Cont(A,2,DU1) Ack (B,3,DU1) Repair(A,4,DU1) Ack(B,5,DU1)

Init(A,1,DU1) Cont(A,2,DU1) Ack (B,3,DU1) ReqRepr(B,4,DU1) Repair(A,5,DU1) Ack(B,6,DU1)

#### More Acknowledgements

#### • Acknowledgements of completed DU<sub>i</sub> by I or R



#### Acknowledgements Example

(8) 1:A: Move the boxcar to Corning 2:A: and load it with oranges 3:B: OK 4:B: To Corning, load with oranges. 4:A: OK Init(A,1,DU1) Cont(A,2,DU1) Ack(B,3,DU1) Ack(B,4,DU1) Ack(A,5,DU1)

#### **Acknowledgement Requests**

#### Acknowledgement request by I



## Acknowledgement Request Example

(8) 1:A: Move the boxcar to Corning 2:A: and load it with oranges 3:A: OK? 4:B: Corning, oranges. 5:A: Yes 6:B: OK. Init(A,1,DU1) Cont(A,2,DU1) Ack(B,3,DU1) Ack(B,4,DU1) Ack(A,5,DU1) Ack(B,6,DU1)

# Is Recursion Necessary?

- Recursion adds computational complexity and is expensive
- Unlimited recursion depth is psychologically unlikely
- Pushdown storage  $\rightarrow$  finite model

# Finite Model (1)



# Finite Model (2)



### Finite Model (3)



#### Finite Model (4)



6/16/14

# **Issues / Deficiencies**

- Degrees of groundedness just binary
  - But there is evidence of graded groundedness
- Utterance unit size (cf. Ex.1)
  - Problem for coding, but any practical solution goes
- Discourse unit size (cf. Ex.1, 7, ...)
- Grounding act ambiguity/unspecificity
  - Entertain multiple possibilities, eliminate later ?
  - Best-first strategy with revision/backtracking ?
- Extension to multimodal or embodied interaction?

# DAMSL: Forward vs. Backward-Looking Functions

#### DAMSL

- DAMSL: hierarchical general DA classification scheme for taskoriented dialogue
  - Forward looking function (like speech act)
  - Backward-looking function: relationship to previous utterance(s) by other speaker (including grounding)
  - Information level
    - Task: doing the task
    - Task management: talking about the task
    - Communication management: managing communication
    - Other
  - Communicative status: intelligibility, interpretability, self-talk...

# **DAMSL: Forward Looking Functions**

command or instruction

Statement

- a claim
- Information request a question
  - Check a question confirming info
- Influence-on-addressee (= Searle's directives)
  - Open-option
  - Action-directive
- Influence-on-speaker
  - Offer
  - Commit
- Conventional
  - Opening
  - Closing
  - Thanking

(= Searle's commissives) offer to do something (subject to confirmation) commitment to do something

- greetings
- farewell
- thanking and responding to thanks

a weak suggestion or list of options

# **Backward Looking Functions**

- Agreement (speaker's attitude toward an action, plan, object, etc.)
  - Accept
  - Accept part
  - Maybe
  - Reject
  - Reject part
  - Hold
- Answer (answer to question)
- Understanding (whether speaker understood previous turn)
  - Signal-non-understanding
  - Signal-understanding
    - Acknowledgement (demonstrated by a continuer or assessment)
    - Repeat-paraphrase (demonstrated by a repetition or rephrase)
    - Completion (demonstrated by collaborative completion)

# ISO DIS 24617-2

http://semantic-annotation.uvt.nl/ChiangMai-tutorial-T4.ppt

#### **Conversation Structure**

#### **Conversation Structure**

- Local: relations between pairs or sequences of turns
- Global: the overall structure of an entire conversation

### Local Structure

- Adjacency pairs (Schegloff 1968):
  - Adjacent turns
  - Produced by different speakers
  - Ordered: First^Second
  - Typed: particular First requires a particular Second
    - Greet-greet, ask-answer, request-grant, offer-accept, compliment-downplay, etc. ⇒ preferences, expectations
- Insertion sequences: APs can be embedded
  - E.g., "sub-dialogue", misapprehension-correction, clarification

## Local Structure: Insertions

- "Sub-dialogue":
  - A: Where are you going?
  - B: Why do you want to know?
  - A: I thought I'd come with you.
  - B: I'm going to the supermarket.
- Clarification:
  - A: I'd like three sausages.
  - B: Which ones? Merquez or Lyoner?
  - A: Merquez.
  - B: Here you go.
- Miscomprehension-Correction:
  - A: When is the next train from SB to Hamburg?
  - B: The next train to Homburg is at 1 p.m.
  - A: Hamburg, not Homburg.
  - B: Ah, Hamburg?
  - A: Yes.
  - B: The next connection to Hamburg Hauptbahnhof is at 3 p.m.

# **Dialogue Games/Sequences**

- Some sequences of dialogue acts occur regularly, are even conventionalized; cf. adjacency pairs
  - Greeting-greeting
  - Question-answer
  - Compliment-downplayer
  - Accusation-denial
  - Offer-acceptance
  - Request-grant
  - ...
- Obligation to respond
- Preferred responses

#### Local Structure: Preferences

- Significant silence (option 1 at a TRP)
  - If A selects B to speak next, but B doesn't
    - Then (assuming B has heard & understood)
       B's silence can be interpreted as a hesitation to give a dispreferred Second,

e.g., B does not know the answer to A's question, B's response to A's offer or request is negative, etc.

• Other cases (silence at options 2 or 3 at a TRP) are just insignificant delays (pauses or lapses)

## Local Structure: Insertions

- "Sub-dialogue":
  - A: Where are you going?
  - B: Why do you want to know?
  - A: I thought I'd come with you.
  - B: I'm going to the supermarket.

#### Clarification:

- A: I'd like three sausages.
- B: Which ones? Merquez or Lyoner?
- A: Merquez.
- B: Here you go.
- Misapprehension-Correction:
  - A: I'd like three sausages.
  - B: Three pairs.
  - A: No, three single pieces.
  - B: OK.

- A: When is the next train from SB to Hamburg?
- B: The next train to Homburg Hauptbahnhof is at 1 p.m.
- A: Hamburg, not Homburg.
- B: Ah, Hamburg?
- A: Yes.
- B: OK, the next connection to Hamburg is at 3 p.m.

#### **Dialogue Structure and Coherence**

- Grosz and Sidner (1985)
  - Linguistic structure: discourse segments signaled by cues, e.g., discourse markers, prosody, etc.
  - Intentional structure: discourse segment purposes and relations between them (dominance, satisfactionprecedence); subdialogues vs. true interruptions
  - Attentional structure: entities in focus spaces corresponding to discourse segments; antecedents for anaphoric links; stack-model of focusing

#### **Global Structure**

- Generic structure of a conversation:
  - Opening: "initialization" (establish contact, greetings, pleasantries)
  - Body: exchange about the subject matter(s) (accomplishing task(s), discussing topic(s)), sometimes a task is ended by a summary
  - Closing: winding down, farewell, breaking contact
- Conventions apply in all sections

#### **Global Structure**



+ task info
+ control options

#### **Global Structure**



# Conclusions

- Characteristics of human-human dialogue that also (should) hold for human-computer dialogue:
  - Turn-taking
  - Initiative and Collaboration
  - Global and local structure
  - Dialogue economy
  - Dialogue acts and indirectness
  - Grounding
- they present challenges for modeling and automatic processing

# Reading

- D. Jurafsky and J. H. Martin. Speech and Language Processing. Chapter 19. Prentice Hall. 2000.
- H. Clark. Using Language. Chapters 4 and 8. Cambridge University Press. 1996.
- DAMSL annotation manual

http://www.cs.rochester.edu/research/cisd/resources/damsl/ RevisedManual/

#### • ISO Standard 24617-2:

http://semantic-annotation.uvt.nl/ http://semantic-annotation.uvt.nl/DIS24617-2.pdf http://semantic-annotation.uvt.nl/ChiangMai-tutorial-T4.ppt