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ABSTRACT—Word learning is a ‘‘chicken and egg’’ prob-

lem. If a child could understand speakers’ utterances, it

would be easy to learn the meanings of individual words,

and once a child knows what many words mean, it is easy

to infer speakers’ intended meanings. To the beginning

learner, however, both individual word meanings and

speakers’ intentions are unknown. We describe a com-

putational model of word learning that solves these two

inference problems in parallel, rather than relying exclu-

sively on either the inferred meanings of utterances or

cross-situational word-meaning associations. We tested

our model using annotated corpus data and found that it

inferred pairings between words and object concepts with

higher precision than comparison models. Moreover, as

the result of making probabilistic inferences about speak-

ers’ intentions, our model explains a variety of behavioral

phenomena described in the word-learning literature.

These phenomena include mutual exclusivity, one-trial

learning, cross-situational learning, the role of words in

object individuation, and the use of inferred intentions to

disambiguate reference.

When children learn their first words, they face a challenging

joint-inference problem: They are both trying to infer what

meaning a speaker is attempting to communicate at the moment

a sentence is uttered and trying to learn the more stable map-

pings between words and referents that constitute the lexicon of

their language. With either of these pieces of information, their

task becomes considerably easier. Knowing the meanings of

some words, a child can often figure out what a speaker is talking

about, and inferring the meaning of a speaker’s utterance allows

a child to work backward and learn basic-level object names

with relative ease. However, for a learner without either of these

pieces of information, word learning is a hard computational

problem. Quine (1960) suggested an apt metaphor: A word

learner is climbing the inside of a chimney, ‘‘supporting himself

against each side by pressure against the others’’ (p. 93).

Many accounts of word learning focus primarily on one aspect

of this problem. Social theories suggest that learners rely on a

rich understanding of the goals and intentions of speakers and

assume that—at least in the case of object nouns—once the

child understands what is being talked about, the mappings

between words and referents are relatively easy to learn (St.

Augustine, 397/1963; Baldwin, 1993; Bloom, 2002; Tomasello,

2003). These theories must assume some mechanism for making

mappings, but this mechanism is often taken to be deterministic,

and its details are rarely specified. In contrast, cross-situational

accounts of word learning take advantage of the fact that words

often refer to the immediate environment of the speaker, which

allows learners to build a lexicon based on consistent associa-

tions between words and their referents (Locke, 1690/1964;

Siskind, 1996; Smith, 2000; Yu & Smith, 2007).

Computational models of word learning have primarily fol-

lowed the second, cross-situational strategy. Models using

connectionist (Plunkett, Sinha, M�ller, & Strandsby, 1992),

deductive (Siskind, 1996), competition-based (Regier, 2005),

and probabilistic (Yu & Ballard, 2007) methods have had sig-

nificant success in accounting for many phenomena in word

learning. However, speakers often talk about objects that are not

visible and about actions that are not in progress at the moment

of speech (Gleitman, 1990), adding noise to the correlations

between words and objects. Thus, cross-situational and asso-

ciative theories often appeal to external social cues, such as eye

gaze (Smith, 2000; Yu & Ballard, 2007), but these are used as

markers of salience (the ‘‘warm glow’’ of attention), rather than
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as evidence about internal states of the speaker, as in social

theories.

More generally, cross-situational models address only one

part of the learner’s task. Such models are able to learn words,

but they do not use the words that speakers utter to infer the

speakers’ intended meanings. By focusing only on the long-term

mappings between items in the lexicon and referents in the

world, purely cross-situational models treat the complex and

variable communicative intentions of speakers as noise to be

averaged out via repeated observations or minimized via the use

of attentional cues, rather than as an important aspect of com-

munication to be used in the learning task.

In this article, we present a model that captures both aspects

of the word-learning task: It simultaneously infers what speakers

are attempting to communicate and learns a lexicon. We first

present the structure of the model and show that it obtains

competitive results in learning from corpus data. We then show

how the probabilistic structure of the model allows it to predict

experimental results such as mutual exclusivity, one-trial word

learning, and rapid cross-situational learning, as well as how its

explicit representation of intention allows it to predict results on

object individuation and the use of intentional cues.

DESIGN OF THE MODEL

Our model (which we refer to as the intentional model) consists

of a set of variables representing the word-learning task and a set

of probabilistic dependencies linking these variables in accor-

dance with our assumptions about the task (see Fig. 1). The

variables represent the lexicon of the language being learned,

the referential intentions of the speaker, the words uttered by the

speaker, and the learner’s physical context at the time of the

utterance. We define the relationships among these variables via

two assumptions. The first is that what speakers intend to say is a

function of the physical world around them. The second is that

the words speakers utter are a function of what the speakers

intend to say and how those intentions can be translated into the

language they are speaking. With these assumptions and an

observed corpus of situations—utterances and their physical

context—our model can work backward using Bayesian infer-

ence to find the most likely lexicon.

Though a speaker’s intentions could, in principle, be very

complex, we limit ourselves here to the task of learning names

for objects. Thus, we represent the physical context of an ut-

terance as the set of objects present during the utterance, the

speaker’s referential intention as the object or objects he or she

intends to refer to, and the lexicon as a set of mappings between

words and objects. We also assume that objects are identified as

instances of basic-level object categories, putting aside the

challenge of identifying the particular aspect of an object being

named (Xu & Tenenbaum, 2007).

Formally, our model defines a probability distribution over

unobserved lexicons L and the observed corpus C of situations.

Our goal is to infer the lexicon with the highest posterior prob-

ability. We find this posterior probability using Bayes’ rule:

PðLjCÞ / PðCjLÞPðLÞ:

Bayes’ rule factors the posterior probability of a lexicon given the

corpus into two terms, the likelihood of the corpus given the

lexicon and the prior probability distribution over lexicons. We

chose a prior probability distribution that favored parsimony,

making lexicons exponentially less probable as they included

more word-object pairings: P(L)/ e�a|L|. The choice of a simple

prior puts most of the work of the model in the likelihood term,

P(C|L); hence, the likelihood term captures the learner’s as-

sumptions about the structure of the learning task.

The likelihood term can be written as a product over situations

of the probability of the components of the corpus (the words W,

objects O, and speaker’s intentions I for each situation s), given

the lexicon:

PðCjLÞ ¼
Y
s2C

PðWs;Os; IsjLÞ: ð1Þ

We can now use our assumptions about the structure of the

task to factor Equation 1. First, W and O are conditionally in-

dependent given I (as shown in Fig. 1). Thus, we can rewrite the

right-hand side as a product of P(Ws|Is,L), the probability of the

words given the speaker’s referential intentions and the lexicon,

and P(Is|Os), the probability of the speaker’s intentions given the

physical context. Second, because we cannot directly observe

the speaker’s referential intention, we sum over all possible

values of Is under the constraint that Is � Os (i.e., that the

relevant subset of possible intentions consists of those that refer

to a subset of the objects in the physical context). Because

speakers often refer to objects outside the physical context, Is

O

W

I

S

Lexicon

Words

Situations

 Referential
 Intention

Objects

L

Fig. 1. Illustration of the dependence relations in our model. O, I, and W
represent the objects present in the context, the objects that the speaker
intends to refer to, and the words that the speaker utters, respectively.
These variables are related within each situation s. The words that the
speaker utters are additionally determined by the lexicon of the speaker’s
language, L, which does not change from situation to situation (and hence
lies outside the representation of the set of situations).
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can be empty (Gleitman, 1990). We rewrite Equation 1 as

PðCjLÞ ¼
Y
s2C

X
Is�Os

PðWsjIs; LÞ � PðIsjOsÞ:

For simplicity (and because we have no information about Is

other than the words that are uttered), we set P(Is|Os)/ 1 so that

all possible intentions are equally likely.

To complete our definition of the model, we define the term

P(Ws|Is,L) by assuming that the words fw1 . . . wng in Ws are

generated independently (ignoring any syntax), and that there are

two possible causes for uttering a word. A word is uttered either

referentially—in order to refer to an object in the speaker’s in-

tention set—or nonreferentially. The probability of a word being

uttered if it is used referentially (PR) is the probability that it will

be chosen from the lexicon to refer to any of the intended referents.

The probability of a word being uttered if it is used nonreferentially

(PNR) is the probability that it will be picked from the lexicon at

random, independently of the speaker’s referential intention.

Verbs, adjectives, and function words are generated nonreferen-

tially, as are object nouns for which the relevant object is not

currently present. The parameter g is the probability that a word is

used referentially in any given context. Thus, we have

PðWsjIs; LÞ

¼
Y

w2Ws

g �
X
o2Is

1

jIsj
PRðwjo; LÞ þ ð1� gÞ � PNRðwjLÞ

" #
:

The probability of a word being used referentially for an ob-

ject, PR(w|o,L), is the probability that the word is chosen uni-

formly from the set of words linked to that object in the lexicon. If

there are, for example, two words linked to an object in the

lexicon, each word has a probability of .5 of being used to refer to

that object; if a word is not linked to an object, its referential

probability for that object is 0. The nonreferential probability of

a word being used is the probability of its being picked from the

full set of words observed in the corpus. This choice is made with

probability proportional to 1 if the word is not in the lexicon and

with probability proportional tok otherwise. Thus, when k is less

than 1, words that are in the lexicon are less likely to be uttered

nonreferentially than words that are not in the lexicon.

In the simulations reported here, we employed stochastic

search methods using simulated tempering (Marinari & Parisi,

1992) to find the lexicon with the maximum a posteriori prob-

ability given an observed corpus. In our on-line supporting in-

formation (see p. 585), we provide code for all models discussed

here (Word-Learning Model Code) and implementational details

regarding the search methods and simulations (Technical Ap-

pendix).

CORPUS EVALUATION

Method

We coded two video files (me06 and di03, each approximately 10

min long) from the Rollins section of the Child Language Data

Exchange System (CHILDES; MacWhinney, 2000). In these

videos, two preverbal infants and their mothers played with a set

of toys. Each line of the transcripts was annotated with a list of

all midsize objects judged to be visible to the infant.1

For comparison, we implemented several other models of

cross-situational word learning using co-occurrence frequency,

conditional probability, and point-wise mutual information. We

also implemented IBM Machine Translation Model I (Brown,

Pietra, Pietra, & Mercer, 1994), the statistical machine-trans-

lation model used by Yu and Ballard (2007). We used the

translation model to compute association probabilities both for

objects given words (as in Yu & Ballard) and for words given

objects.

We evaluated all models both on the accuracy of the lexicons

they learned and on their inferences regarding the speakers’

intent. Each of the comparison models produced a single sum-

mary statistic linking words and objects (e.g., association

probability). We chose the threshold value for this statistic that

maximized the F score—the harmonic mean of precision (pro-

portion of pairings that were correct) and recall (proportion of

total correct pairings that were found)—of the resulting lexicon.

We then used each model to make guesses about the speaker’s

intended referents for each utterance. For our model, we chose

the intention with the highest posterior probability given

the best lexicon; for the comparison models, we assumed that the

intended referents were those objects for which the matching

words in the best lexicon had been uttered. We computed scores

relative to a gold-standard lexicon and a gold-standard set of

intents, both created by a human coder. The gold-standard

lexicon incorporated all standard word-object pairings (for a

lamb toy, ‘‘lamb’’), plurals (‘‘lambs’’), and baby talk (‘‘lambie’’);

the gold-standard set of intents contained the human coder’s

best judgment of which objects in the visual context were being

referred to in each utterance.

Results

Our intentional model substantially outperformed the compar-

ison models with respect to the lexicons the model learned

(Table 1) and the intentions it inferred (Table 2). This advantage

was robust across systematic variation of the model’s three free

parameters (a, the degree to which the model favors small lex-

icons; g, the probability of using words referentially; and k, the

parameter controlling how likely words in the lexicon were to be

used nonreferentially, compared with words outside the lexicon).

In addition, the advantage remained when k and g were set to

their maximum a posteriori values (the joint empirical Bayes

estimate; see Carlin & Louis, 1996), reducing the number of free

parameters to one—the same number as in the baseline models.

Table 3 shows the best lexicon learned by the intentional model.

1These videos are the same ones used by Yu and Ballard (2007); the anno-
tations are our own.
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Both the simple statistical models and the translation model

found a large number of spurious lexical items; the best lexicons

found by these models were considerably larger than the best

lexicon found by our model.2 The high precision of the lexicon

found by our model was likely due to two factors. First, the

distinction between referential and nonreferential words al-

lowed our model to exclude from the lexicon words that were

used without a consistent referent. Second, the ability of the

model to infer an empty intention allowed it to discount utter-

ances that did not contain references to any object in the im-

mediate context.

PREDICTION OF EXPERIMENTAL RESULTS

As a consequence of its structure, our model exhibits a graded

preference for certain kinds of lexicons and utterance inter-

pretations. First, the model prefers sparse lexicons because the

simplicity prior biases the model against adding word-object

mappings that do not increase the likelihood of the data. Second,

the model tends to prefer one-to-one lexicons if they are con-

sistent with the observed data, because having multiple words

that can refer to an object reduces the probability of any single

word being used consistently to refer to that object. Finally, the

model prefers that people have intentions to talk about the ob-

jects that are present, because words that are generated refer-

entially from an intention to talk about an object have higher

likelihood than words that are generated nonreferentially at

random from the entire vocabulary of the language. These three

preferences allow the model to predict a number of empirical

results in early word learning.

Cross-Situational Word Learning

Recent work has provided strong evidence that both adults and

children are able to learn cross-situational associations between

words and objects even in the absence of individually unam-

biguous trials (Smith & Yu, 2008; Vouloumanos, 2008; Yu &

Smith, 2007). Our model and all of the comparison models

successfully found all the correct word-object pairings with

perfect precision and recall when presented with the stimulus

TABLE 2

Precision, Recall, and F Score for the Referential Intentions

Found by Each Model, Using the Lexicons Scored in Table 1

Model Precision Recall F score

Association frequency .27 .81 .40

Conditional probability (object|word) .59 .36 .45

Conditional probability (word|object) .32 .79 .46

Mutual information .36 .37 .37

Translation model (object|word) .57 .41 .48

Translation model (word|object) .40 .57 .47

Intentional model .83 .45 .58
Intentional model (one parameter) .77 .36 .50

Note. The highest values obtained are highlighted in boldface.

TABLE 1

Precision, Recall, and F Score of the Best Lexicon Found by Each

Model When Run on the Annotated Data From the Child

Language Data Exchange System

Model Precision Recall F score

Association frequency .06 .26 .10

Conditional probability (object|word) .07 .21 .10

Conditional probability (word|object) .07 .32 .11

Mutual information .06 .47 .11

Translation model (object|word) .07 .32 .12

Translation model (word|object) .15 .38 .22

Intentional model .67 .47 .55
Intentional model (one parameter) .57 .38 .46

Note. The highest values obtained are highlighted in boldface (differences
between values may not be apparent because of rounding).

TABLE 3

The Best Lexicon Found by the Intentional

Model

Word Object

bear bear
bigbird bird
bird duck
birdie duck
book book
bottle bear

bunnies bunny
bunnyrabbit bunny
hand hand
hat hat
hiphop mirror

kittycat kitty
lamb lamb
laugh cow

meow baby

mhmm hand

mirror mirror
moocow cow
oink pig

on ring

pig pig
put ring

ring ring
sheep sheep

Note. Entries judged to be correct according to the gold
standard are shown in boldface.

2The performance we report for the translation model is considerably lower
than that reported by Yu and Ballard (2007). Several factors may have con-
tributed to this difference. The speech transcripts used in our study were taken
directly from CHILDES, whereas those in Yu and Ballard’s study may have
differed because the utterance boundaries in their transcripts were identified
via the application of speech-recognition software to the original videos (C. Yu,
personal communication, June 25, 2007). Also, our coding of the corpus and
theirs may have included slightly different sets of objects for each situation.
Finally, our gold-standard lexicon likely differed from theirs as well.
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materials used in Yu and Smith’s artificial-language experi-

ments. Given that the statistics in these experiments sharply

favor the correct lexicon, the success of human learners does not

help to differentiate among the models we compared.

Mutual Exclusivity

In classic demonstrations of mutual exclusivity, a child is pre-

sented with two objects, one familiar and one novel. The ex-

perimenter asks, ‘‘Can you hand me the [novel name]?’’ and the

child hands over the novel object, indicating that he or she has

correctly inferred that the novel name refers to it (Golinkoff,

Hirsh-Pasek, Bailey, & Wenger, 1992; Markman & Wachtel,

1988). Markman and her colleagues (Markman, 1989; Markman

& Wachtel, 1988; Markman, Wasow, & Hansen, 2003) have

suggested that children possess a principle of mutual exclusivity

that leads them to prefer lexicons with only one label for each

object. Other researchers have suggested alternate explana-

tions, including more limited principles that are learned with

experience (Golinkoff, Mervis, & Hirsh-Pasek, 1994; Mervis &

Bertrand, 1994) and more general pragmatic principles (Clark,

1988, 2002).

Without building in an explicit assumption of mutual exclu-

sivity, our model shows a soft preference for one-to-one map-

pings. We tested our model in the classic mutual-exclusivity

paradigm (Markman & Wachtel, 1988) and found that it cor-

rectly inferred that the novel word mapped to the novel object.

We scored four possible lexicons on our original CHILDES

corpus extended with a mutual-exclusivity scenario (the word

‘‘dax’’ is uttered in the presence of a bird toy and a novel object, a

dax). Each panel of Figure 2 shows the relative posterior prob-

ability of one lexicon under the model along with its relative

prior probability and the relative likelihood it assigns to both the

original corpus data and the new mutual-exclusivity situation.
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Fig. 2. Our model’s relative probabilities for a learner’s possible lexical hypotheses in a mutual-exclusivity experiment. If the
experimenter utters the novel word ‘‘dax’’ in the presence of a novel object (a dax) and a known object (a bird), the learner can
decide the word refers to (a) neither object, (b) the dax, (c) the bird, or (d) both objects. Each panel shows the prior probability,
the likelihood of the original corpus data, the likelihood of the experimental situation, and the posterior (total) probability for one
hypothesis. A parameter set less extreme than the one in the corpus simulations was used so that absolute rather than log
probabilities could be plotted, but this change did not affect the ordering of hypotheses. All probabilities were normalized across
the four possible hypotheses.
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Lexicons in which ‘‘dax’’ was mapped to the familiar object, bird

(Figs. 2c and 2d), were unlikely with respect to the original

corpus because each sentence in which ‘‘bird’’ was uttered be-

came less likely as a result of the unrealized possibility of

hearing ‘‘dax.’’ The lexicon in which no new words were learned

(Fig. 2a) had a higher prior probability because it involved no

growth in the size of the lexicon, but had a low likelihood in the

experimental context (because under this hypothesis, the word

‘‘dax’’ was not in the lexicon and hence must have been uttered

nonreferentially, rather than being uttered because of an in-

tention to refer to the dax). Overall, our model preferred the

correct lexicon (Fig. 2b).

This result is not unique to our model: The basic finding of

mutual exclusivity is captured by many of the baseline models

we tested. In the example just discussed, the conditional prob-

ability of the word ‘‘dax’’ given the presence of the bird is quite

low, whereas the probability of the word ‘‘bird’’ given the pres-

ence of the bird is still very high. Combined with the demon-

stration that adults and infants are able to use some sort of

statistical information in cross-situational learning tasks (Smith

& Yu, 2008; Yu & Smith, 2007), the success of our model and

others suggests that it is not necessary to posit domain-specific

principles to account for findings of mutual exclusivity.

One-Trial Learning

Another classic result in the literature on word learning is the

ability of children to learn a new word from only one or a small

number of incidental exposures (Carey, 1978; Markson &

Bloom, 1997). Our model and the comparison models predict

that there are some situations that—in conjunction with the

learner’s previous experiences—can provide sufficient evi-

dence for a word’s referent to be inferred after a single exposure;

in fact, the mutual-exclusivity experiment just described pro-

vides one such situation. We next turn to a set of experimental

results that, to the best of our knowledge, cannot be captured by

the comparison models.

Object Individuation

Even before their first birthday, infants are able to use the

presence of words as an aid in individuating objects (Xu, 2002).

In one experiment by Xu, infants saw first a duck and then a

ball emerge from and then retreat behind a screen. Infants in the

two-word condition heard, ‘‘look, a duck’’ and then ‘‘look, a

ball’’; infants in the one-word condition heard, ‘‘look, a toy’’

twice. At test, the screen dropped, revealing either one or two

objects. Infants in the one-word condition looked longer when

two objects were revealed than when one object was revealed

(indicating that they expected only one object), whereas infants

in the two-word condition looked slightly longer when one object

was revealed than when two objects were revealed (indicating

that they expected two objects and were surprised that one had

disappeared).

Why would hearing two different labels allow infants to make

the inference that two different objects were behind the screen?

Perhaps the infants’ assumptions about how words are normally

used allowed them to infer what state of the world (one object or

two) would be most likely to make a speaker utter the labels they

heard. Because our model prefers lexicons with more one-to-one

mappings and lexicons that interpret the corpus as having more

referential words, the best interpretation of Xu’s (2002) two-

word condition in our model is that each word refers to a different

object and that both words are being used referentially. Under

this interpretation, there must be two different objects behind

the screen, so that each of the two words can be used referen-

tially to refer to one of the objects. Likewise, in the one-word

condition, the most likely interpretation is that the one word

refers to one object and that the word is being used referentially

for that object; thus, there is likely only one object behind the

screen.

To simulate Xu’s (2002) paradigm formally in our model, we

created sets of situations corresponding to the two experimental

conditions. For each set, we created two construals: one in which

there were two objects (though they were seen one at a time) and

one in which there was only one object. To simulate the infant’s

uncertainty about the meanings of the word or words in the ex-

periment, we evaluated each construal for all possible lexicons.

In order to link the probability of a particular state of the world

under our model to the looking time of infants in Xu’s study, we

used surprisal (negative log probability), a measure that has

previously been used successfully to link model probabilities to

human reaction time data (Levy, 2007). We compared the sur-

prisal of the model for the two construals of each experimental

condition (e.g., two words, one object vs. two words, two objects).

This comparison can be interpreted as measuring, for a learner

with no knowledge of what the words mean, how much more or

less surprising it would be to find one object as opposed to two

behind the screen. We found a crossover interaction, with sur-

prisal being higher when the number of words did not match the

number of objects. This result mirrors those Xu (2002) obtained

(see Fig. 3). Thus, our model was able to use its assumptions

about how words work to make inferences about the states of the

world that caused a speaker to produce particular utterances.

Intention Reading

Baldwin (1993) conducted an experiment in which 19-month-

old toddlers were shown two opaque containers, each containing

a different novel toy. The experimenter opened one container,

named the toy inside without showing the child the contents of

the container, gave the child the toy from the second container to

play with, and finally gave the child the first (labeled) object.

Despite the greater temporal contiguity between the label and

the second toy, the children showed evidence of learning that the

label corresponded to the first toy. Baldwin interpreted these

results as evidence that the children used the experimenter’s
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referential intention as their preferred guide to the meaning of

the novel label. Our model, built around inferring the speaker’s

intended referents, can capture this interpretation directly. To

illustrate this point, we constructed a situation with two novel

objects and a single novel word. Whereas we previously treated

the speaker’s intention as a hidden variable, to model Baldwin’s

task, we gave the model additional information that the speaker

intended to refer to the first novel object. The model then highly

preferred the correct pairing.

This result should not be surprising, as we directly incorpo-

rated the referential intention of the speaker into our simulation.

But a model that does not incorporate a representation of ref-

erential intent will be unable to predict Baldwin’s (1993) results.

Under a salience view, in order for the correct mapping to occur,

the object that is out of sight would have to be more perceptually

salient than the unlabeled object. Thus, models that rely directly

on perceptual salience do not capture these results.

GENERAL DISCUSSION

We have presented a model that unifies cross-situational sta-

tistical approaches and intentional approaches to word learning.

The model performs well in learning words from a natural corpus

and also predicts a variety of behavioral phenomena reported in

the word-learning literature. Previous evaluations of word-

learning models have focused on either their behavioral cover-

age (Regier, 2005) or their performance in learning words from

corpus data (Yu & Ballard, 2007), but, to our knowledge, our

study is the first systematic attempt to evaluate models on both

criteria.

Our model operates at the ‘‘computational theory’’ level of

explanation (Marr, 1982). It describes explicitly the structure of

a learner’s assumptions in terms of relationships between ob-

served and unobserved variables. Thus, in defining our model,

we have made no claims about the nature of the mechanisms that

might instantiate these relationships in the human brain. This

kind of ideal-observer analysis is only one part of a full account

of early word learning, and many other computational models

can provide insights into different aspects of this process (Co-

lunga & Smith, 2005; Gold & Scassellati, 2007; Li, Zhao, &

MacWhinney, 2007; Regier, 2005).

The success of our model supports the hypothesis that spe-

cialized principles may not be necessary to explain many of the

smart inferences that young children are able to make in

learning words. Instead, in some cases, a representation of

speakers’ intentions may suffice. Our model is only a first step,

but we hope that this work will inspire future modelers to use

intentional inference to unite the rich variety of information

available to young word learners.
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on-line version of this article:

Technical Appendix

Word-Learning Model Code
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content or functionality of any supporting materials supplied

by the authors. Any queries (other than missing material)

should be directed to the corresponding author for the article.
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