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Abstract

We present a computational model of how partial comprehen-
sion of utterances in context may drive the acquisition of chil-
dren’s earliest grammatical constructions. The model aimsto
satisfy convergent constraints from cognitive linguistics and
crosslinguistic developmental evidence within a statistically
driven computational framework. We examine how the tight
coupling between contextually grounded language comprehen-
sion and learning processes can be exploited to improve the
model’s ability to search the space of possible constructions. In
particular, previously learned constructions may not fully ac-
count for all contextually perceived mappings between forms
and meanings. In the model, these incomplete analyses di-
rectly prompt the formation of new relational mappings that
bridge the gap. We describe an experiiment applying the model
to the acquisition of English verb island constructions anddis-
cuss how the model handles more complex examples involving
Russian morphological constructions. Together these demon-
strate the viability of the overall approach and representational
potential of the model.

Beyond single words
How do children make the leap from single words to complex
combinations? The simple act of putting one word in front
of another to indicate some relation between their meanings
is widely considered the defining characteristic of linguistic
competence and the key to unlocking the combinatorial and
expressive power of language. A viable account of the acqui-
sition of these combinatorial patterns, orgrammatical con-
structions, would thus have significant implications for any
theory of language that aspires to cognitive plausibility.

As with most issues impinging on the nature of gram-
mar, linguistic and developmental inquiries into the source
of combinatorial constructions have bifurcated along theoret-
ical lines. These reflect divergent assumptions about, among
other things, what kind of learning bias children bring to the
task, how the target linguistic knowledge should be repre-
sented, what kind of data should be considered part of the
training input, and how (if at all) language learning interacts
with other linguistic and cognitive processes. Theoreticians
within the formalist “learnability” paradigm, for example,
have generally restricted their attention to the form domain,
taking the input for learning to be a set of surface strings (each
a sequence of surface forms) and positing relatively abstract
structures that govern the combination of linguistic units.

This paper takes as starting point the hypothesis that the
learning problem at hand may encompass a broader subset
of the child’s experience, centrally including meaning as it is

communicated in context. We assume along with many the-
ories of language that the basic unit of linguistic knowledge,
for both lexical items and larger phrasal and clausal units,
is a symbolic pairing of form and meaning, orconstruction
(Langacker, 1987; Goldberg, 1995; Fillmore and Kay, 1999).
Since the target of learning is rooted in both form and mean-
ing domains, the learner should exploit information from both
domains during learning.

Most importantly, we view linguistic constructions as in-
herently dependent on and supportive of dynamic processes
of languageuse, anchored in a communicative context. A
crucial but often neglected source of bias in learning con-
structions must therefore be how much they help the child
meet her communicative goals.

This paper presents a computational model of construction
learning consistent with these principles, focusing on how
language understanding drives language learning. We de-
scribe a statistically driven machine learning framework that
takes as input a sequence of child-directed utterances paired
with their associated situational context, along with the cur-
rent grammar, or set of constructions; this grammar is ini-
tially restricted to lexical items. The utterances are passed
to a language understanding system (Bryant, 2003) that pro-
duces a partial interpretation, which provides the basis for the
learning model to form new constructions. We present re-
sults showing how the model acquires simple English “verb
island” constructions (Tomasello, 1992), and discuss how the
same mechanisms handle the more complex constructions in-
volved in Russian nominal case marking. These studies lend
support for the larger program of integrating cognitive and
constructional approaches to linguistics, crosslinguistic de-
velopmental evidence, and machine learning techniques to
address the puzzles of language acquisition.

The Construction Learning model
We briefly describe the construction learning model in terms
of (1) the target representation of learning, (2) assumptions
about the child language learning scenario, and (3) the com-
putational learning framework; see (Chang, 2004; Chang and
Maia, 2001) for more details.

Target representation: embodied constructions
Embodied Construction Grammar (Bergen and Chang, in
press; Chang et al., 2002) is a computationally explicit for-
malism for capturing insights from the construction gram-
mar and cognitive linguistics literature. ECG supports an
approach to language understanding based on two linked



processes: analysis determines what constructions and
schematic meanings are present in an utterance, resulting in a
semantic specification(or semspec); the semspec serves to
parameterize asimulation using active representations (or
embodied schemas) to produce context-sensitive inferences.

Semantic representations in ECG are richly detailed and
cognitively motivated, incorporating image schemas, motor
schemas, force-dynamic schemas, and fine-grained represen-
tations of event and participant structure. But for ease of ex-
position, we omit most of this detail in our simple examples
below, since it is not crucial for our current focus on the acqui-
sition of the earliest constructions with constituent structure.1

We highlight a few aspects of the formalism relevant for
the learning model discussion to follow, exemplified by the
lexically specific clausalThrow-Transitive construction
shown in Figure 1. The formalism draws from both object-
oriented programming languages and constraint-based gram-
mars, including notations for expressing features, inheritance,
typing, and unification/coindexation.

constructionThrow-Transitive
constituents

t1 : Referring-Expression
t2 : Throw
t3 : Referring-Expression

form
t1f before t2f
t2f before t3f

meaning
t2m.thrower  ! t1m
t2m.throwee  ! t3m

Figure 1: Representation of a lexically specificThrow-Transitive construction, licensing expressions likeYou
throw the ball, with separate blocks listing constituent con-
structions (t1, t2, t3), form constraints (e.g., the word order
relationbefore) and meaning constraints (e.g., the identifi-
cation binding ! ).

All constructions haveform andmeaning blocks, but the
constituents block appears only in the complex construc-
tions that are the target of the present learning enterprise.
These constituents may be typed as instances of particular
constructions, and their form and meaning components (or
poles) may be referred to (shown with a subscriptedf orm) by the constraints listed in the form and meaning blocks.
Form constraints are used to capture (partial) word order and
other relations between form segments. In the meaning do-
main, the primary relation isidentification, or unification, be-
tween two meaning entities. In particular, we will focus on
role-filler bindings, in which a role (or feature) of one con-
stituent is identified with another constituent. The example
construction involves three constituents – two referring ex-
pressions and the verbThrow. Their form poles are con-
strained to come in a specified order, and the meaning poles of

1These features play a key role in the acquisition of argument
structure and grammatical markers; we return to this issue later.

the two referring expressions fill the specified roles (thrower
andthrowee) of the verbal constituent’s meaning pole.

Input: modeling the child learning scenario
Children entering the two-word stage (typically toward the
end of the second year) are relatively savvy event participants,
having developed a wealth of structured knowledge about the
participant roles involved in different events and the kinds of
entities likely to fill them (Nelson, 1996; Tomasello, 1992).
Their single-word vocabularies typically include names for
familiar people and objects, as well as some words for ac-
tions. They make use of pragmatic knowledge and joint at-
tention to infer both communicative intentions (Tomasello,
1995) and subtle lexical distinctions (Bloom, 2000), and often
respond appropriately to multi-word comments and queries
from their parents even in the single-word stage (Bloom,
1973). That is, children can robustly interpret utterances be-
yond their productive abilities, using (incomplete) lingustic
knowledge and relatively sophisticated inference abilities.

These findings suggest that grammar learning may, rather
than suffer from the poverty of the stimulus, instead capital-
ize on the opulence of the substrate. Our learning model thus
assumes an ontology of known concepts and an initial lexi-
con of constructions, represented in ECG. Input data reflects
the child’s ability to perceive an utterance with a particular
intonational contour and segment it into a sequence of word
forms, and to pragmatically infer the relevant participants and
events in the accompanying situation, as shown in the exam-
ple input below, where boxed index numbers indicate identi-
fication links between participants:2666666666664

Form : h utterance : throw the ball
intonation : falling

i
Participants : Mother 0 , Naomi 1 , Ball 2

Scene : " Throw
thrower : Naomi 1

throwee : Ball 2

#
Discourse : 2664 speaker : Mother 0

addressee : Naomi 1

speech act : imperative
activity : play
joint attention : Ball 2

3775
3777777777775

The example input represents a discourse event in which
the mother says “throw the ball” with falling intonation to the
child (Naomi). We assume the child can infer (using prag-
matic cues) that the corresponding main scene concerns a
throwing event to be performed by the child on a particular
ball attended to in context. Note here that the action is the
inferred intent of the mother, and may or may not be car-
ried out by the child. But the (intended) role-filler structure
is assumed in our model to be inferrable in context and thus
available to the learning mechanism.

Besides these assumptions, the learning model also draws
on findings about the developmental course of construction
learning. Early word combinations appear to be lexically spe-
cific, with a gradual transition to more general constructions
(Tomasello, 1992); crosslinguistically they tend to relate to a
small set of basic scenes (Slobin, 1985); and acquisition phe-



nomena are sensitive to a number of usage-based consider-
ations (Tomasello, 2003; Clark, 2003) such as the frequency
with which a construction is encountered, the simplicity of its
form and meaning, and how easily a particular utterance can
be analyzed into its component constructions.

In sum, the model incorporates strong assumptions about
the child’s conceptual and lexical knowledge and pragmatic
abilities, based on developmental evidence. Relatively weak
assumptions are made about innate syntactic biases: the ECG
formalism allows word order as a possible form constraint.
Thus most of the learning bias comes from the meaning
domain, and the constructional assumption that forms and
meanings are linked.

Computational learning framework

We now describe a computational model of how constructions
can be learned from experience. The input is a sequence of ut-
terances paired with their meanings in context, as described in
the last section. The learner has access to a language analysis
process like that described earlier, which produces a (partial)
interpretation of the input utterances based on the current (po-
tentially incomplete) set of constructions. The learning task
is then modeled as an incremental search through the space of
possible grammars, where the learner adds new constructions
on the basis of encountered data. As in the child learning sit-
uation, the goal of learning is to converge on an optimal set
of constructions, i.e., a grammar that is both general enough
to encompass significant novel data and specific enough to
accurately predict previously seen data.

A suitable overarching computational framework for guid-
ing the search is provided by the minimum description length
(MDL) heuristic (Rissanen, 1978), which is used to find the
optimal analysis of data in terms of (a) a compact represen-
tation of the data; and (b) a compact means of describing the
original data in terms of the compressed representation. The
MDL heuristic exploits a tradeoff between competing prefer-
ences for smaller grammars (encouraging generalization) and
for simpler analyses of the data (encouraging the retention
of specific/frequent constructions). This is an approxima-
tion of the same tradeoff exploited in previous work apply-
ing Bayesian model merging to learning verbs (Bailey, 1997)
and context-free grammars (Stolcke, 1994). We extend these
approaches to handle the relational structures of the ECG for-
malism and the process-based assumptions of the model.

Learning strategies. The model may acquire new con-
structional mappings in two ways:

relational mapping New relational map(s) are formed to ac-
count for form-meaning mappings present in the input but
unexplained by the current grammar.

reorganization Regularities across known constructions are
exploited, either to merge two similar constructions into
a more general construction, or to compose two construc-
tions that cooccur frequently into a single construction.

Each construction is also associated with a weight that is
incremented as a result of its successful use in analysis.

Algorithms for these operations are given elsewhere
(Chang and Maia, 2001; Chang, 2004); relational mapping
plays the most crucial role in proposing new relational con-
straints among constituents and will be illustrated in more de-
tail in the next section.

Evaluating grammar cost. The strategies above provide
means for updating the current grammar; the model must then
determine which update is optimal at any point in learning,
according to some length-based evaluation criterion. We use
an approximation of the Bayesian posterior probability of the
grammarG given the dataD that we call thecostof G:

cost(GjD) = m � size(G) + n � cost(DjG)
size(G) = Xc2G size(c)
size(c) = nc + rc +Xe2c length(e)

cost(DjG) = Xd2D score(d)
score(d) = Xx2d(weightx + p �Xt2x jtypetj)+heightd + semfitd

wherem andn are learning parameters that control the rela-
tive bias toward model simplicity and data compactness. The
size(G) is the sum over the size of each constructionc in the
grammar (nc is the number of constituents inc, rc is the num-
ber of constraints inc, and each element referencee in c has a
length, measured as slot chain length). The cost (complexity)
of the dataD givenG is the sum of the analysis scores of each
input tokend usingG. This score sums over the construc-
tions x in the analysis ofd, where weightx reflects relative
(in)frequency,jtypetj (wheret ranges over the constituents
of x) denotes the number of ontology items of typet (i.e.,
the number of alternative fillers for the constituent), summed
over all the constituents in the analysis and discounted by pa-
rameterp. The score also includes terms for the height of the
derivation graph and the semantic fit provided by the analyzer
as a measure of semantic coherence.

These criteria favor constructions that are simply described
(relative to the available meaning representations and the cur-
rent set of constructions), frequently useful in analysis, and
specific to the data encountered.

Learning from meaning in context
This section describes in greater detail the integration of the
learning model with an implemented construction analyzer
(Bryant, 2003). We illustrate the analyzer-learner interaction
with an example based on the input data shown earlier.

Constructional analysis. On encountering new data, the
learner first calls a construction analyzer designed to per-
form the analysis process described earlier (Bryant, 2003).



The analyzer consists of a set ofconstruction recognizers
that recognize the input forms of each construction and check
whether the relevant semantic constraints are satisfied. The
analyzer draws on partial parsing techniques so that utter-
ances not fully covered by known constructions can never-
theless yield partially filled in semantic specifications. More-
over, unknown forms in the input can be skipped, allowing
quite simple constructions to provide at least skeletal inter-
pretations of more complex utterances.

In the example, we assume the current grammar includes
lexical constructions forthrow andball, but no word com-
binations or construction for the articlethe. The utterance
“throw the ball” at this stage produces a semspec containing
two schemas, corresponding to the meanings of the two rec-
ognized constructions, but no associations between them:

SCHEMA13 (Ball)
SCHEMA3 (Throw)

thrower: SCHEMA4 (Human)
throwee: SCHEMA8 (Physical-Object)

Here, SCHEMA13 corresponds to the meaning pole of theBall construction, andSCHEMA3 corresponds to the mean-
ing pole of theThrow construction.

Resolution. We extended the existing analyzer with a res-
olution procedure that matches the output semspec against
the input context. Like other resolution (e.g. reference reso-
lution) procedures, it relies on category/type constraints and
(provisional) identification bindings. The resolution proce-
dure attempts to unify each schema and constraint appearing
in the semspec with some type-compatible entity or relation
in the context. In the example,SCHEMA13 resolves by this
process to the salientBall in the input, andSCHEMA3 resolves
to theThrow action in context.

Relational mapping. At this point the learner has a par-
tial semspec that through resolution accounts for a subset
of the information available in the input context descrip-
tion (namely, the presence of a throwing event and a ball).
The learner now searches for a candidate relational mapping
present in the input context but not accounted for by the sem-
spec – that is, a form relation that is unused in the current
analysis, paired with a meaning relation that is unaccounted
for in the semspec. These relations must be structurally
isomorphic, that is, their arguments must involve form and
meaning poles of the same constituent constructions. In the
example, the input includes a number of unexplained mean-
ing relations – for example, the identity of the speaker and
addressee, and bothThrow schema roles. But only one of
these – the binding between thethrowee role and the ball –
involves meanings that are also accounted for in the input,
and for which there is a corresponding form relation over the
form poles of the relevant constructions (i.e., an ordering re-
lation betweenthrowandball).

The situation is depicted in Figure 2, where the in-
put utterance-context pair are shown as form and meaning
schemas and relations on either side of the figure. Construc-
tions found by the analyzer are shown in the center, account-

UTTERANCE CONTEXTCONSTRUCTS

BALLball

speaker:

temporality:  ongoing

joint attention:

addressee:
speech act:  imperative

Discourse

throw

intonation: falling

activity: play

Ball

throwee
thrower
Throw

Naomi

Mom

Block

HROWT

NEW CONSTRUCTION

Figure 2: Relational mapping in the learning model for the
utterancethrow (the) ball. Heavy solid lines indicate struc-
tures matched during analysis; heavy dotted lines indicate the
newly hypothesized mapping.

ing for the form and meaning schemas drawn with solid heavy
lines (i.e., the recognized input and produced semspec). The
discovery of structurally isomorphic relations over the form
and meaning poles of the two recognized constructions leads
to the hypothesis of the new lexically specificThrow-Ball
construction shown in the figure (with heavy dotted lines) and
formally in Figure 3.

constructionThrow-Ball
constituents

t1 : Throw
t2 : Ball

form
t1f before t2f

meaning
t1m.throwee  ! t2m

Figure 3: Example learned construction:Throw-Ball
learned from the utterance-context pair in Figure 2.

This example illustrates the simplest relational mapping
strategy; the requirement of strictly isomorphic form and
meaning relations can also be relaxed to allow more com-
plex relational correspondences (expressed using longer con-
straints). All such mapping strategies are designed to discover
how known constructions may fit together in larger structures,
thus giving rise to constituent structure.

Once these structured (but lexically specific) constructions
are learned, they are subject to reorganization, such that mul-
tiple constructions involvingthrow and a specific thrown ob-
ject may be merged into a generalizedthrow-Object construc-
tion (contingent on the MDL learning criteria). We now ex-
plore how the model can learn patterns of this kind from a
corpus of child-directed utterances.

Experiment: English verb island constructions
The construction learning model was tested in an experi-
ment targeting the acquisition of lexically specific, or item-



based, constructions; we focus on patterns centering on spe-
cific verbs. This task is of cognitive interest, since “verb is-
land” constructions appear to be learned on independent tra-
jectories (i.e., each verb forms its own “island” of organiza-
tion (Tomasello, 1992; Tomasello, 2003)).

Input data. The training corpus for the experiment is a sub-
set of the Sachs corpus of the CHILDES database of parent-
child transcripts (Sachs, 1983; MacWhinney, 1991) annotated
as part of a study of motion utterances (Dan I. Slobin, p.c.).
The transcript data consists of parent and child utterances oc-
curring during a joint background activity (e.g., a meal or
play). All motion expressions were annotated with descrip-
tions of the inferred speaker meaning and the surrounding
discourse and situational context. We used a subset of this
corpus containing 829 labeled motion-related child-directed
utterances spanning the child’s development from 1;3 through
2;6, during which the child makes the transition from the
single-word stage. Parental utterances were extracted into in-
put data of the form shown above.

Evaluation criteria. The goal of language learning in our
framework is to improve language understanding. We thus
defined a quantitative measure intended to gauge how new
constructions incrementally improve the model’s comprehen-
sive capacity. We defined a grammarG’s coverageof dataD
as the percentage of total bindingsb in the data (i.e., role-
filler bindings relevant to the verb) included in its interpreta-
tion (semspec), and measured coverage at each stage of learn-
ing. Thethrow subset, for example, contains 45 bindings to
the roles of theThrow schema (thrower, throwee, andgoal
location). At the start of learning, the model has no combi-
natorial constructions and can account for none of these, but
as learning progresses, the model should learn constructions
that allow it to cover increasingly more of these bindings.
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Figure 4: Incremental coverage for three verb islands.
(Graphs are scaled relative to subcorpus size.)

Results. Figure 4 shows results for three verb islands:drop
(n=10 examples),throw (n=25), andfall (n=50); other verbs

followed similar patterns. In all cases coverage gradually
improved over the course of learning, as expected, and the
model was able to account for a majority of the bindings in
the data relatively quickly. But as shown by these examples,
the particular learning trajectories were distinct:throw con-
structions show a gradual build-up before plateauing;fall has
a more fitful climb that seems to converge at an upper bound;
anddrop has an even more jagged rise. A possible explana-
tion for some of these differences may lie in pragmatic differ-
ences:throw has a much higher percentage of imperative ut-
terances thanfall (since throwing is pragmatically more likely
to be done on command). The relational mapping strategy
used in the experiment misses the association of an imper-
ative speech-act with unexpressed agent, which has a more
pronounced effect on the learning ofthrowconstructions.

Also as expected, the earliest constructions are combina-
tions of specific words (e.g,throw-ball, throw-frisbee, you-
throw), giving rise later in learning to more general construc-
tions (e.g.,throw-Object and Agent-throw). Figure 5 shows
the number of each type learned.

lexical general total
drop 5 1 6
throw 11 4 15
fall 21 9 30

Figure 5: Number of constructions learned for each verb, in-
cluding both fully lexically specific constructions and verb
island constructions with at least one generalized argument.

Discussion. Despite the small corpus sizes, the results are
indicative of the model’s ability to acquire useful verb-based
constructions. Differences in verb learning lend support to
the verb island hypothesis and illustrate how the particular se-
mantic, pragmatic and statistical properties of different verbs
can affect their learning course.

Case study: Russian
The verb island experiment demonstrates the model’s ability
to acquire constituent structure, an essential step in moving
beyond lexical items. But the child’s learning scenario may
be significantly more complicated. We briefly consider some
problems that arise for learners of comparable Russian con-
structions and how the model addresses them.

In Russian, casemarkers suffixed on nouns indicate the par-
ticipant role played by their associated referents. Word or-
der is thus highly variable:malchik brosaet devochk-e my-
ach (boy-NOM throw-3s girl-DAT ball-ACC) anddevochk-
e brosaet myach malchik(girl-DAT throw-3s ball-ACC boy-
NOM) have the same participant structure, glossed as ‘boy
throws ball to girl’. Moreover, the same marker may be am-
biguous over multiple class/case combinations (e.g.,-a indi-
cates either Feminine-I/NOM or Masculine-Animate/ACC).

Flexible word order does not in itself pose an obstacle to
the model. Deferring nominal morphology for the moment
(see below), the first multi-word constructions learned by the



model (via relational mapping) are, like their English equiva-
lents, both verb-specific and fixed-order (e.g., one for each of
the examples above). During construction reorganization, the
model seeks candidates for merging that are similar in both
meaning and form; separate fixed-order constructions involv-
ing the same constituents with equivalent participant struc-
tures are prime candidates. Generalizing over these construc-
tions leads to a new construction that contains all the shared
structure of the original constructions, omitting in this case
the order constraints.

Morphological constructions are similar to word combina-
tions in involving constituency, though word-internal. The
main difference is that casemarkers do not occur indepen-
dently of their nominal contexts, and are first learned as part
of an unstructured larger unit. Thus the relational mapping
strategy for learning constituent structure cannot apply di-
rectly. We assume, however, that over time the child is able
to segment words into stems and endings, based on general
pattern-detection mechanisms (Peters, 1985). Then the model
can merge multiple constructions with the same stem and
different endings (e.g., mergingdevochk-e(girl-DAT) and
devochk-a(girl-NOM) yields a stemdevochk-with no par-
ticipant role specified). Similarly, a particular casemarker oc-
curring on different stems (but the same verbal context) can
be merged to yield a suffix construction whose meaning pole
is associated with a specific participant role (or multiple roles,
since polysemous markers are allowed). The resulting stem
and casemarker constructions may then serve as constituents
for larger morphological constructions.

Conclusion

The work described in this paper are best characterized as first
steps toward concrete computational validation of our broad
research paradigm. The model is intended to offer a detailed
picture of the pivotal role meaning in context plays in the ac-
quisition of grammar. It draws on evidence from across the
cognitive spectrum arguing for a construction-based grammar
formalism, extensive prior knowledge, and a data-driven, in-
cremental learning course.

We have concentrated on the acquisition of constituent
structure, as demonstrated by the verb island learning experi-
ment. Note that we have not addressed how the model learns
constructions that depend on more general semantic cate-
gories; these include both general argument structure con-
structions corresponding to basic scenes (caused motion, ma-
nipulative activity, etc.), and casemarking constructions that
generalize across verbs. These categories are not assumed to
be universal, but rather must be learned based on the fine-
grained semantic structure available in the ECG representa-
tion. In ongoing work we are investigating the conditions and
assumptions that allow such constructions to emerge. We are
also exploring the relative rates of acquisitions of different
classes of verbs and continuing to test the robustness of the
model to crosslinguistic data.
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