
We experience speech in our native language as a se-
quence of discrete words. This can lead to the impression
that speech must contain some acoustic analog of the blank
spaces that appear between printed words in many languages.
When listening to an unfamiliar language, however, we gen-
erally hear a continuous stream of speech broken only by the
silences at the ends of utterances. ‘Utterances’, the units of
speech that are delimited by easily recognized acoustic bound-
aries, typically consist of multiple words. This dichotomy
between the experiences of hearing known and unknown
languages raises two questions. First, how do speakers with
native mastery of a language effortlessly and unconsciously
transform a stimulus consisting of continuous speech into a
percept consisting of a sequence of discrete words? That is,
how is knowledge of a particular language brought to bear
on the problem of segmenting speech into words? Second,
how do infants and toddlers segment speech and learn new
words despite their limited knowledge of the ambient lan-
guage? In particular, how do they overcome the handicap of
their regular encounters with utterances that contain one or
more unfamiliar words? 

At a fundamental level, the tasks that adults and young
children face are the same – adults sometimes encounter
and learn novel words, and children often recognize familiar
words within utterances. However, adults are already familiar
with a vastly larger proportion of the words they encounter

than are children. As a result, research on adult speech seg-
mentation has focused on questions of on-line lexical ac-
cess1–5 and cues that may help to limit the number of un-
successful lexical access attempts6,7, setting aside the issue of
novel words. Research on language learning, on the other
hand, has focused primarily on cues to help limit the num-
ber of hypothesized novel words, and is only beginning to
address on-line lexical access8. This article reviews recent
work on speech segmentation from the perspective of lan-
guage learning, focusing particularly on computational
models.

A language learner hears utterances that may contain one
or more unfamiliar words, each of which may or may not
refer to some observable object, action or property. For ex-
ample, let abcde be an utterance, where each letter stands for
a perceptual unit of speech, such as a phoneme or syllable.
There are 15 sub-sequences of abcde – a, b, c, d, e, ab, bc, cd,
de, abc, bcd, cde, abcd, bcde, and abcde itself. One possible
learning strategy would be to store all of these in memory,
as candidate words, in the hopes of eventually figuring out a
meaning and a syntactic function for one or more of them.
However, this would impose a considerable memory burden.
Further, the problem of matching sounds up with meanings
would be enormously complicated by the presence of so
many candidates for the sounds of words. From the compu-
tational perspective, the aim of research in segmentation
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and word discovery is to identify mechanisms that children
use to reduce these computational burdens by reducing the
number of candidate word sounds. 

The segmentation and word discovery problem has re-
ceived considerable attention dating back to the work of
Roger Brown9 in the 1960s (see also Zelig Harris10). Recent
years have seen a surge of interest in this topic, leading to a
number of proposed cues and strategies that children might
use. Among these are three types of phonological cues. First,
some languages provide what Cutler and colleagues have
called ‘rhythmic’ cues11,12. For example, most stressed sylla-
bles in English are word-initial7, and adult speakers of
English find it more natural to segment connected speech in
such a way that stressed syllables occur at the beginnings of
words13,14. Language learners following such a strategy
might eliminate candidate words containing non-initial
stressed syllables, thereby reducing the number of candi-
dates. Indeed, Jusczyk and colleagues have shown that 7.5-
month-old (but not 10.5-month-old) American infants
have difficulty recognizing the sound-patterns of words
with non-initial stress15. A second type of cue that children
might use is ‘allophonic variation’ – the fact that some
speech sounds are pronounced differently when they occur
in word-final position as opposed to word-initial posi-
tion16–18. A third type of phonological cue derives from the
phonotactic properties of a language – that is, which se-
quences of phonemes are common in words of the lan-
guage, which are rare, and which are not permitted at all.
For example, a learner who knew that English does not

allow words beginning in two stop consonants could avoid
mis-segmenting /bIgkæt/ (bigcat) into /bI/ and /gkæt/.
There is evidence that both adults6,19 and infants20 can make
use of language-particular phonotactic cues. While rhyth-
mic cues have been minor players in computational models
of language learning and allophonic cues have not appeared
at all, phonotactic cues in various forms have featured
prominently in several models21–23.

Segmentation strategies
With one exception24, existing computational models of
segmentation and word discovery do not address the inter-
action between segmentation and the mapping of hypoth-
esized word forms to their meanings or their syntactic priv-
ileges. As a result, the input they take consists entirely of
representations of speech sounds. The term ‘phoneme’ will
be used to describe the fundamental units of the input rep-
resentation, since most computer simulations reported in
the literature use phonemic representations. However,
many of the models described below could easily be applied
to representations based on other units, such as syllables (see
Box 1).

All existing models implicitly impose a constraint against
hypothesizing overlapping words. For example, no model
would hypothesize that two words, ab and bc, both occur in a
single instance of the utterance abcde. Most models also forbid
embedded words. For example, they would not hypothesize
that two words, ab and abc, both occur in a single instance
of the utterance abcde. (For exceptions, see Refs 24,34.) 
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Computer simulations that take transcripts of spontaneous speech as input
have all used transcription systems based on either atomic phonemes or
phonemic features. In a transcription system based on atomic phonemes the
first symbols of the representations of dotty and dirty are identical, while the
first vowels are distinct – they are no more similar to each other than to con-
sonants. In a representation based on phonemic features, phonemes are related
by shared features that define a similarity metric. For example, vowels are more
similar to one another than to consonants. A third possibility is to represent
each syllable in the input with an atomic symbol that does not encode any 
information about its relation to other syllables. For example, the first sym-
bols of the representations of dotty and dirty would stand for distinct syllables
(pronounced /da/ and /d2 /), which would be no closer to one another than
to any other syllable. 

Simulations of models based on the utterance-boundary strategy have
used phonemic features because a featural representation makes it easier to
learn generalizations about which sequences of phonemes tend to occur
before utterance boundaries. (The utterance-boundary strategy, discussed in
the main text, is to hypothesize word boundaries after phoneme sequences
that are characteristic of the ends of utterances.) The success of this strategy
is expected to be sensitive to the input representation, so these models make
some theoretical commitment to an input representation based on a featural
decomposition of either phonemes or syllables. Featural representations may
provide some robustness against the natural variability in the pronunciation
of a word, since alternative pronunciations are likely to be nearer to one
another by the feature metric than by the atomic phoneme metric. Simulations
based on the predictability strategy and the word-recognition strategy have
generally used input transcribed into atomic phonemes. However, these strate-
gies do not imply any theoretical commitment about the input representation,
since they treat the input as a string of arbitrary symbols.

There is substantial evidence that the atomic syllable is a salient perceptual
unit for infants (Refs a,b), while evidence that the phoneme is also a salient unit
for infants is, at present, lacking (Ref. c). This would seem to suggest that
simulations should use a syllabic representation. However, there are compli-
cations. The experiments with infants have been done primarily with consonant-
vowel (CV) syllables, the canonical syllable type that occurs in all languages.
In languages with more complex syllables, including English, words are typi-
cally resyllabified in context in such a way that the syllables can cross word
boundaries. For example, the phrase teak rail in fluent speech arguably con-
sists of the two syllables /ti/ (tea) and /krel/ (krail). A listener who hears the
atomic syllables /ti/ and /krel/, but who represents the corresponding words
in her lexicon using the atomic syllables /tik/ (teak) and /rel/ (rail), would fail
to retrieve the correct lexical entries. If a word-recognition algorithm is to
have any chance of succeeding on syllabic input, the syllabification must be
consistent with word boundaries. But such a syllabification seems to encode
a non-trivial portion of the word-boundary information that segmentation
models are designed to uncover. Further, most of the experiments that failed
to find evidence of phonemic representation have been done with infants that are
much too young to learn words, and there is some evidence that finer-grained
representations begin to develop even by six months (Ref. d).
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In addition to these structural principles, all existing compu-
tational models of segmentation and word discovery are based
on one of three fundamental strategies:

(1) Hypothesize word boundaries after phoneme se-
quences that are characteristic of the ends of utterances 
(utterance-boundary strategy). 

(2) Hypothesize word boundaries before phonemes that
would not have been predicted on the basis of the preceding
phonemes (predictability strategy).

(3) Hypothesize whole words and recognize them when
they occur in utterances (word-recognition strategy).

The remainder of this section discusses each of these
strategies in turn.

Utterance-boundary strategy
Computational models relying primarily on the utterance-
boundary strategy have been described by both Aslin et al.22

and Christiansen et al.23 (Table 1). Both groups imple-
mented this strategy using neural networks. The networks
were trained to predict, among other things, the locations of
utterance boundaries in sequences of phonemes transcribed
from spontaneous speech to young children. The networks
were interpreted as predicting a word boundary when the

activation on the utterance-boundary unit exceeded its
mean activation. This method is motivated by the notion
that the phoneme sequences immediately preceding utter-
ance boundaries will bear some statistical similarity to those
immediately preceding word boundaries. This notion is
plausible because the ends of utterances are also the ends of
words. As a result, phonemes or phoneme sequences that
are rare at the ends of words will also be rare at the ends of
utterances. Conversely, sequences that are common at the
ends of words will also be common at the ends of utter-
ances, provided that the words they occur in can appear at
the ends of utterances. However, the fact that /@/ occurs
very often at the ends of words like the and a does not imply
that /@/ occurs frequently at the ends of utterances, since
the words the and a are themselves extremely rare at the
ends of utterances. 

The utterance-boundary strategy relies on learning and
exploiting certain phonotactic regularities of the input lan-
guage – those governing the ends of words. Thus, it is a 
special case of the more general class of phonotactically 
driven strategies. However, no models have yet been proposed
that rely primarily on learning more general phonotactic
regularities.
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Table 1. Characteristics of selected models of segmentation and word discovery

Model Strategy Processing Memory

Growth Content Stability

Aslin22 utt. boundary on-line bounded implicit statistics interference

CAS23 utt. boundary on-line bounded implicit statistics interference, decay

Elman26 predictability on-line bounded implicit statistics interference, decay

Cairns27 predictability on-line bounded implicit statistics interference, decay

T.P.25,28 predictability on-line bounded explicit statistics stable

M.I.28 predictability on-line bounded explicit statistics stable

PARSER34 recognition on-line, unbounded strings, strengths interference, decay 
synthetic

INCDROP28 recognition incremental, unbounded strings, frequencies stable
analytic

DR Opt.21 recognition batch, analytic unbounded strings, frequencies stable

Olivier* recognition batch, synthetic unbounded strings, frequencies stable

Redlich29 recognition batch, synthetic unbounded strings, frequencies stable

de Marcken24 recognition batch, synthetic unbounded trees, frequencies stable

MK10H30 recognition batch, synthetic unbounded trees, frequencies stable

Solid lines separate groups of models that use the same segmentation strategy. Differences in the other characteristics are in-
dicated by dotted lines. For models that are stated abstractly the processing characteristic (Processing column) is determined by
the best implementation to date (e.g. the MBDP-1 implementation of Incdrop) which is described in one of the papers cited for
the model. The notation ‘trees’ in the Memory (Content) column indicates models that allow embedded word-like units and use
parse trees rather than strings to represent units. *(D.C. Olivier, PhD thesis, Harvard University, 1968.)



Predictability strategy
The second segmentation strategy does not rely on utterance
boundaries at all. Instead, it relies on the fact that guessing
an unknown phoneme based on adjacent phonemes in the
same word is easier than guessing on the basis of adjacent
phonemes in different words. For example, most occur-
rences of the phoneme /D/ are followed by vowels, as in the
very frequent words the, this, that, and them. This implies
logically that only a small percentage are followed by other
phonemes, such as /m/. When /m/ does follow /D/, as in
bathe more, its very surprisingness suggests that it is likely to
be the first phoneme of a new word. This effect forms the basis
for a number of segmentation models. For instance, Saffran
and colleagues25 – treating syllables rather than phonemes as
the fundamental units of input – have proposed that chil-
dren might estimate the probability of each syllable in the
language conditioned on its predecessor as follows:

P (y |x) < frequency (xy)/frequency (x)

This is the same computation that was illustrated infor-
mally in the /Dm/ example – the conditional probability of y
given x is estimated by the proportion of x’s that have been
followed by y’s in the learner’s experience so far. This con-
ditional probability estimate is commonly called the ‘transi-
tional probability’. Saffran et al. suggest that children might
segment utterances at low points of the transitional prob-
ability between adjacent syllables – that is, when a syllable
occurs that is surprising given its predecessor.

The predictability strategy has also been implemented
using neural networks by Elman26 and Cairns et al.27 (Table 1).
In this approach the network is trained to predict the next
phoneme. The network’s prediction for each phoneme is
compared to the actual phoneme. The more surprising the
actual phoneme is, in view of the network’s prediction, the
more likely it is to be word-initial.

Word-recognition strategy
The word-recognition strategy works by hypothesizing
word-like units, storing explicit representations of them,
and attempting to recognize them when they occur in ut-
terances. The term ‘word-like unit’, or simply ‘unit’, is used
to emphasize the fact that hypothesized units are not neces-
sarily actual words of the language – the hypothesis could be
incorrect. When a unit that is hypothesized to occur in a
particular utterance matches a unit that has previously been
hypothesized and stored it is called a ‘familiar unit’; other-
wise, it is called a ‘novel unit’. The recognition of a familiar
unit in an utterance reduces the number of potential novel
units because of the no-overlap principle. For example, if
cde is recognized as an occurrence of a familiar unit in the
utterance abcde then there are only three potential new units:
a, b, and ab. This is a substantial reduction from the 15 possi-
bilities when no occurrences of familiar units are recognized
in abcde.

Most recognition-based segmentation algorithms (Refs
21,24,28–30, and D.C. Olivier, PhD thesis, Harvard
University, 1968) have been cast in terms of choosing a seg-
mentation of the input in such a way as to ‘optimize’ a set of
criteria or, when they are stated more formally, to ‘optimize
an objective function’. A simple example of optimization is

fitting a straight line to a set of points in the plane, where
the most commonly used objective function is the sum of
squared deviations of the points from the line. The line that
minimizes the sum of squared deviations is taken to be the
line that fits the points best. An example of the optimization
approach to segmentation and word discovery is the INCDROP

model28,31,32, which can be characterized qualitatively as 
follows. Segment each utterance in such a way as to:

(1) Minimize the sum of the lengths of all hypothesized
novel units in the segmentation.

(2) Minimize the number of hypothesized novel units in
the segmentation.

(3) Maximize the product of relative frequencies of the
units in the segmentation. The relative frequency of a unit
is the number of times that unit has occurred so far as a pro-
portion of the total number of times all units have occurred
so far.

Criterion (3) favors segmentations with fewer and hence
longer units, all other things being equal. This is because
each relative frequency is less than one, so multiplying more
of them together leads to a smaller product, all other things
being equal. However, the criteria balance each other. For ex-
ample, analyzing every utterance as a single, long, novel unit
would be favored by criterion (3), but it would be disfavored
even more strongly by criterion (1). Conversely, analyzing
each utterance as a sequence of short, familiar, one-phoneme
words would be favored by criteria (1) and (2), but it would
be disfavored even more strongly by criterion (3) (Ref. 21).

The INCDROP optimization criteria can be derived rigor-
ously from a probabilistic generative grammar. The grammar
encodes the prior knowledge that sentences are constructed
by selecting words from some finite, but initially unknown,
lexicon, and stringing them together28. The INCDROP criteria
also have a natural cognitive interpretation in terms of mini-
mizing the burden of memorizing new words (by minimizing
the number and length of new words) and minimizing the
burden of accessing the memories of familiar words (by mini-
mizing the number of accesses and maximizing the frequencies
of the words to be accessed).

INCDROP makes a number of behavioral predictions, 
including these: 

(i) Utterances that contain no sequences matching
stored units are analyzed as a single novel unit. This unit is
stored for recognition in later utterances.

(ii) A sequence that matches a stored unit and does not
overlap any other sequences that match stored units will tend
to be recognized as an instance of the stored unit, unless that
unit is both very short and very rare. The contiguous se-
quences that remain after the recognized unit is extracted
are segmented as though they were separate utterances. (See
Refs 31,32 for additional predictions.)

These two predictions can be derived directly from 
criteria (1)–(3) above (see also Refs 31,33). The following
utterances, which a mother was recorded saying to her child,
illustrate the predictions:

That!…Isthatforthedoggy?
INCDROP predicts that a child who did not yet know any

of the words in these utterances would treat the first utter-
ance, that, as a single novel unit and store it for later recog-
nition. That would then be extracted from Isthatforthedoggy.
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The remaining contiguous strings, is and forthedoggy, would
be segmented as though they were separate utterances. Not
recognizing any familiar units within them, the child would
store them as novel units for later recognition. In the case 
of is, a very valuable new word would be stored. Although
forthedoggy is not a word, its syntactic and semantic coher-
ence suggest that storing it as a word would do little harm to
a child’s lexicon.

Under the INCDROP model, learners can make good use
of isolated words without identifying isolated words as such.
Instead, they assume that each utterance consists of a single
word unless there is evidence that it contains a familiar unit
within it. Furthermore, isolated words are not essential for
bootstrapping segmentation. For example, if a learner with
no knowledge of relevant words heard the utterances getit?
Igetit! Ican! canyou? then INCDROP predicts the following
segmentation: getit? I_getit! I_can! can_you? At the cost of
mistaking getit for a single word, the learner is predicted to
extract I, can, and you without ever hearing an isolated word.

Empirical tests of some of the INCDROP predictions, as
well as some predictions of the transitional probabilities
model, are discussed below. It seems likely that testable pre-
dictions can be extracted from other segmentation models
also, but to the best of my knowledge no explicit behavioral
predictions of other models have been published.

Processing characteristics
INCDROP and its predecessor DR Optimization21 are ‘analytic’
recognition models, meaning that they start with whole utter-
ances as the default units and analyze them into smaller units
as the evidence warrants. All other proposed word-recognition
models are ‘synthetic’, meaning that they start with phonemes
as the default units and join them into larger units as the evi-
dence warrants (Refs 24,29,30,34 and D.C. Olivier, PhD
thesis, Harvard University, 1968). Typically, synthetic algo-
rithms only consider novel units that can be built up by com-
bining either two or three familiar units; an utterance that con-
sists of more than three phonemes but does not contain any
other familiar units cannot be analyzed as a single novel unit.

The INCDROP model is ‘incremental’, meaning that it
always finalizes the segmentation of an utterance by the end
of that utterance, without waiting to examine the next utter-
ance. All other algorithms that implement the word recog-
nition strategy using optimization are batch, meaning that
they can store an unlimited amount of input, segment utter-
ances out of order, and revise earlier decisions. Because hu-
mans segment each utterance as they hear it, batch algorithms
are sometimes viewed as psychologically implausible. How-
ever, that is true only if these algorithms are interpreted as
exact descriptions of cognitive models. An alternative inter-
pretation is that writing about batch algorithms in the con-
text of human segmentation and word discovery constitutes
an implicit promissory note to the effect that there exists a
closely related incremental algorithm. INCDROP fulfills that
promise with respect to its predecessor, DR Optimization,
which was implemented as a batch algorithm for optimizing
the same criteria.

While the incremental processing of INCDROP constitutes
progress over batch algorithms, humans segment ‘on-line’,
meaning that they decide whether there is a word boundary

between two phonemes within a fixed window of time after
the phonemes are heard. Further, humans appear to use a
‘predictive on-line’ algorithm, meaning that they guess at the
identity of the current word before the end of the word has
been heard1,3,5,8. Thus, INCDROP, as a cognitive model, rests on
the expectation that there exists a predictive on-line algo-
rithm that closely resembles the current incremental imple-
mentation in both segmentation accuracy and behavioral
predictions.

One proposed model, PARSER34, is based on the word-
recognition strategy but not on optimization. Starting from
the beginning of the input, PARSER repeatedly segments out
(recognizes) the longest section of input that matches a stored
unit. This longest-match approach, which is used instead of
choosing the segmentation that maximizes the product of
relative frequencies, makes PARSER nearly on-line. However,
it seems likely that this approach will impair segmentation
accuracy when PARSER is applied to natural language input.
Nonetheless, PARSER is interesting because it is the only
recognition-based model that was designed around psycho-
logical principles like on-line processing, decay of memory
traces, and interference among similar memory traces. PARSER

challenges modelers starting from mathematical principles
to fulfill the promise of on-line algorithms and to address the
limitations of human memory.

No currently proposed model of segmentation and word
discovery has been implemented as a predictive on-line 
algorithm. However, the algorithms based on the utterance-
boundary strategy and the predictability strategy are ‘con-
servative on-line’, meaning that they are on-line but do not
guess at the identity of the current word while it is still being
read in. On the one hand, these algorithms are a step closer
to the predictive on-line behavior of humans than INCDROP,
and that constitutes a significant achievement. On the other
hand, predictive on-line segmentation requires stored repre-
sentations of hypothesized words2,4, so utterance-boundary
and predictability algorithms cannot be made predictive with-
out, in effect, making them recognition algorithms (though
not necessarily optimization algorithms). Recognition algo-
rithms do have stored representations of hypothesized words
and hence they can, in principle, be adapted to do predictive
on-line segmentation.

Memory use in computational models
In the theory of computation, a fundamental distinction is
made between ‘bounded memory’ systems, which can use
only a fixed amount of memory regardless of the input, and
‘unbounded memory’ systems, whose use of memory can
grow as needed with no fixed limit. Proposed algorithms
based on the utterance-boundary and predictability strategies
have bounded memory, while those based on recognizing
hypothesized words use more memory as they hypothesize
more words (Table 1). In human languages the number of
distinct words encountered appears to grow without limit as
more input is processed, since new words are continually
being coined, so the word-recognition strategy will use more
memory to store the new words as more input is processed.
Of course, a bounded-memory system with a large enough
memory could store all the words that one individual is likely
to encounter in his or her lifetime.
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Proposed segmentation models also differ in terms of what
is represented in memory (Table 1). All currently proposed
bounded-memory algorithms work primarily by representing
sub-lexical units. Algorithms that are based on neural networks
store implicit, distributed, connectionist-style representations,
while the rest store explicit statistics about the frequency of
individual phonemes and pairs of phonemes. Recognition-
based models represent hypothesized units explicitly.

Different models also differ in whether their stored rep-
resentations are stable or subject to interference and/or decay
(Table 1). This is important from the perspective of psycho-
logical plausibility, since human memory appears to be subject
to interference and decay under certain conditions. All cur-
rently proposed models that use neural networks are subject
to interference when their memory load approaches capacity.
Models based on feed-forward networks (e.g. Ref. 22) are not
subject to decay that depends only on time, but those based
on recurrent networks (e.g. Refs 23,26,27) can experience
memory decay with time. The algorithms that store explicit
representations, including the local statistics stored by tran-
sitional-probability models and the lexical representations
stored by word-recognition systems, generally use stable mem-
ory. The exception is PARSER, a word-recognition model
with explicit representations of phoneme-strings that are sub-
ject to both interference and decay calculated according to
explicit functions34.

The development of new memory models for recognition-
based algorithms is a promising avenue of research. While
recognition-based algorithms use an unbounded amount of
memory, reducing the rate at which memory usage grows
by introducing forgetting mechanisms might enhance the
psychological plausibility of these models.

Implementations and simulations
In principle, any fact about children’s discovery of the sound
patterns of words, including the types of errors they make, is
relevant to deciding among alternative segmentation models.
However, very little reliable and reproducible data about
children’s segmentation errors is available. But one fact is truly
robust: children eventually succeed at segmenting speech and
acquiring a lexicon. Computer simulations have therefore
focused on investigating the degree to which competing
segmentation models can explain this central fact.

Computer simulations using phonemic transcripts of
spontaneous, child-directed speech have been reported for a
number of the algorithms described above. In the most ex-
tensive published comparison to date, I found that MBDP-1,
an implementation of the INCDROP model, yielded the most
accurate segmentations and lexicons of the algorithms tested28.
MBDP-1 had an average segmentation accuracy of about
70%, while two algorithms based on predictability (transi-
tional probabilities and Elman’s algorithm) had average ac-
curacies in the 40%–45% range. A predictability algorithm
based on mutual information (MI in Table 1), which I de-
veloped for comparison purposes, had an average accuracy
of about 55%. MBDP-1 was the only algorithm for which
the overall accuracy of the lexicon increased as more input
was processed; for all other algorithms, the percentage of 
hypothesized words that had in fact occurred as words in
the input declined as more input was processed.

Various combinations of cues have also been tested. In one
simulation, input containing stress information was provided
to an utterance-boundary segmenter23. The system learned not
only which phonemes tend to occur at the ends of utterances
but whether stressed or unstressed syllables are more likely at
the ends of utterances. The results showed that, under certain
assumptions about the stressing of function words, stress infor-
mation can yield a statistically significant increase in the accu-
racy of an utterance-boundary segmenter, from 37% to 43%.

In another simulation, phonotactic constraints on the con-
sonant clusters that can occur at English word boundaries were
derived by explicitly memorizing the consonant clusters that
occur at the beginnings and ends of utterances in the input.
The results showed that this phonotactic knowledge boosted
the performance of a batch recognition-based algorithm21.

Evidence from human subjects
Investigations involving human subjects have yielded several
types of evidence about how people segment speech and dis-
cover the sound patterns of novel words. These investigations
include studies of infants’ perceptual abilities and knowledge
of the ambient language, studies of infants’ and adults’ patterns
of inference using stimuli from auditory artificial languages,
and studies of spontaneous speech by caretakers to children.
Selected results of each type are reviewed briefly in this section.
A more detailed account of infant speech segmentation can
be found elsewhere35. 

Studies of infant speech perception have yielded a wealth
of important results suggesting that substantial adaptation
to the rhythmic, phonotactic, and allophonic properties of
the ambient language occurs between the ages of six and
nine months15. These studies, which examined infants’
speech segmentation abilities using natural language stimuli
also shed light on the complex interplay of pattern recogni-
tion and rhythmic cues, and how this interplay changes
during infancy15. However, these studies were not aimed at
differentiating among the proposed computational models.

Investigations of particular models have generally relied
on auditory artificial languages. In one such study, Saffran
and colleagues constructed a continuous stream of computer-
synthesized nonsense syllables by concatenating, in random
order, four three-syllable ‘words’. They found that, after two
minutes of exposure to this continuous stream, eight-month-
old infants did not listen as long to the ‘words’ from which
it was constructed as they did to three-syllable foils that had
also occurred in the syllable stream but were not words36.
Saffran et al. explained this result in terms of transitional
probabilities, although Perruchet and Vintner subsequently
argued that it could also be explained by PARSER34. Clearly,
though, the absence of utterance boundaries in the stimulus
implies that the utterance-boundary strategy cannot be in-
voked to explain this result. Similarly, analytic recognition-
based models like INCDROP cannot explain this result, since
they bootstrap by treating whole utterances as words.

Saffran et al.’s results suggest that, when confronted with
long stretches of speech containing no familiar words and no
utterance boundaries, infants can still discover novel words.
The significance of this finding for language development
depends on how often infants are confronted with long 
utterances containing no familiar words and whether such
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utterances are used for word discovery. A number of studies
have reported that the average length of an utterance in speech
to young children is about 3.5 words. Using very conservative
methods, Jeff Siskind and I estimated the average frequency of
isolated words in the speech of eight mothers to their infants
(ages 9.5–12.5 months) to be about 7%, excluding interjec-
tions, onomatopœia, social routines, and all words that did
not also appear in multiword utterances (unpublished data).
Thus, the language learning environment seems to afford
plenty of short, easily remembered utterances that also occur
as sub-sequences of longer utterances – just what would be
needed to make an analytic word-recognition strategy such
as INCDROP effective.

Inspired by the work of Saffran et al., Dahan and Brent
carried out artificial language experiments in which stimuli
consisting of two, three, and five-syllable utterances were
presented to adult subjects32. The subjects were exposed to
both short (two- or three-syllable) utterances and long (five-
syllable) utterances that contained a short utterance within
them. For example, subjects might hear koshedi and, after
several unrelated items, koshedifenu. The results showed that
the subjects tended to treat short utterances as a single unit
by default; for example, subjects who had heard koshedi in
isolation remembered koshedi better than they remembered
koshe, and conversely for those who heard koshe in isolation.
When a short utterance occurred within a longer utterance
it was segmented out and the remainder was treated as a unit.
For example, subjects who heard koshedi and koshedifenu re-
membered fenu better than they remembered difenu. These
results and others reported in that paper are consistent with
INCDROP. Further, transitional probabilities alone cannot
explain the pattern of results32.

The results of the Saffran et al. and the Brent and Dahan
studies show two different behaviors that can be observed,
depending on whether the materials consist of short utter-
ances with embedding or very long utterances. Although
short utterances appear to be a better model of the language
learning environment, both behaviors need to be explained.
It would therefore constitute significant progress if a single
model could explain both patterns, and could also perform
as well as INCDROP in simulations on input transcribed from
spontaneous speech.

Conclusions
In the study of segmentation and word discovery we face a
wealth of good intuitions that are ripe for integration into a
more comprehensive model. Based on the simulations and
empirical data cited above, I believe that a comprehensive
model should be based on word recognition. Within a
recognition-based model, both phonotactics (including the
utterance-boundary strategy) and predictability can play a
role in evaluating the probabilities that particular sound se-
quences are novel words of the language being heard, and
hence should be stored in memory and recognized in future
utterances. As the lexicon grows and familiar words come to
dominate novel words, recognition will naturally come to
dominate phonotactics and predictability in determining
segmentation behavior.

In addition to modeling the information sources used
for segmentation and word discovery, a comprehensive
model should segment on-line and predict the completions
of incoming words, consistent with the experimental data
on humans. Furthermore, it should attempt to model the
limitations of human memory for speech, to the extent that
these are understood.

The tools for constructing such a comprehensive model
of segmentation and word discovery appear to be at hand.
Probability, and generative probability models in particular,
provide a universal scale for weighing information provided
by sources such as word recognition, phonotactics, and pre-
dictability against one another.  Optimization – the process
of evaluating segmentations in order to find the most prob-
able one – provides a framework within which different
processing models can be paired with different probability
models. Separating memory for hypothesized words from
optimization processes that recognize words makes it poss-
ible to model decay and interference independently of infor-
mation sources and processing considerations. Within the
framework of probability, optimization and memory that is
separate from processing, it should be possible to create a
single model that is suitable for studies of lexical access,
speech segmentation and word discovery.
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Bringing about desirable collisions (making interceptions) and avoiding unwanted

collisions are critically important sensorimotor skills, which appear to require us to

estimate the time remaining before collision occurs (time-to-collision). Until recently

the theoretical approach to understanding time-to-collision estimation has been

dominated by the tau-hypothesis, which has its origins in J.J. Gibson’s ecological

approach to perception. The hypothesis proposes that a quantity (tau), present in the

visual stimulus, provides the necessary time-to-collision information. Empirical results

and formal analyses have now accumulated to demonstrate conclusively that the tau-

hypothesis is false. This article describes an alternative approach that is based on recent

data showing that the information used in judging time-to-collision is task- and

situation-dependent, is of many different origins (of which tau is just one) and is

influenced by the information-processing constraints of the nervous system.

In his science fiction novel The Black Cloud1, Sir Fred Hoyle
created a disaster scenario in which the eponymous cloud is
on a collision course with the solar system. Faced with the
impending doom, the question on everyone’s lips was ‘How
long have we got?’ The answer was not immediately apparent

when nobody knew how far away the cloud was or how fast
it was moving. In his novel, Hoyle provided a simple method
for determining the time remaining. This method was sub-
sequently introduced into the psychological literature as an
hypothesis for how activities involving interactions with
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