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Evaluation of Computational Models

• Cognitive models cannot be solely evaluated based on their 
accuracy in performing a task

• The behavior of the model must be compared against observed 
human behavior

• The errors made by humans must be replicated and explained

• Evaluation of cognitive models depends highly on 
experimental studies of language
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Language Acquisition Models: Evaluation

• What humans know about language can only be estimated/
evaluated through how they use it

• Language processing and understanding

• Language production

• Analysis of child production data yields valuable clues

• Developmental patterns such as error and recovery

• Comprehension experiments reveal biases and preferences

• knowledge sources that children exploit, and their biases 
towards linguistic cues
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Language Production Data

• CHILDES database (MacWhinney, 1995)

• An ever-growing collection of the recorded interactions (text, 
audio, video) between children and their parents
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2	
 @Languages:	
 en
3	
 @Participants:	
 CHI Adam Target_Child, URS Ursula_Bellugi Investigator, MOT Mother, ...
4	
 @ID:	
en|brown|CHI|3;1.26|male|normal|middle_class|Target_Child||
5	
 @ID:	
en|brown|PAU|||||Brother||
6	
 @ID:	
en|brown|MOT|||||Mother||
..
9	
 @Date:	
 30-AUG-1963
10	
 @Time Duration:	
 10:30-11:30
11	
 *CHI:	
          one busses .
12	
 %mor:	
 det:num|one n|buss-PL . 
13	
 %xgra:	
 1|2|QUANT 2|0|ROOT 3|2|PUNCT
14	
 *URS:	
 one .
15	
 %mor:	
 det:num|one . 
16	
 %xgra:	
 1|0|ROOT 2|1|PUNCT
17	
 *CHI:	
          two busses .
18	
 %mor:	
 det:num|two n|buss-PL . 
19	
 %xgra:	
 1|2|QUANT 2|0|ROOT 3|2|PUNCT
20	
 *CHI:	
           three busses .
21	
 %mor:	
 det:num|three n|buss-PL . 
22	
 %xgra:	
 1|2|QUANT 2|0|ROOT 3|2|PUNCT



Experimental Methods

• Online methodologies

• Reading time studies: measure relative processing difficulties 

• Eye-tracking studies: Monitor gaze as people hear a spoken 
utterance; anticipatory eye-movements reflect interpretation

• Visual world paradigm: monitor subjects’ eye movements to 
visual stimuli as they listen to an unfolding utterance

• Offline methodologies

• Preferential looking studies: monitor infants’ preferences of 
certain scene depictions based on linguistic stimuli

• Act-out scenarios: describe an event and ask the child to act it 
out using a set of toys and objects

• Elicitation tasks: persuade the child to describe an event or action
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Reading Times
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The man held at the station was innocent

themanheldatthestationwasinnocent

--- man ---- -- --- ------- --- --------The --- ---- -- --- ------- --- ----------- --- held -- --- ------- --- ----------- --- ---- at --- ------- --- ----------- --- ---- -- the ------- --- ----------- --- ---- -- --- station --- ----------- --- ---- -- --- ------- was ----------- --- ---- -- --- ------- --- innocent

• Reading the whole sentence

• Self-paced reading, central presentation

• Self-paced reading, moving window



Eye-tracking 

The man held at the station was innocent
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Preferential-looking Studies

• Monitor infants’ preference of visual stimuli based on 
linguistic stimuli

Tim and Kim
are blicking.
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Preferential-looking Studies

• Monitor infants’ preference of visual stimuli based on 
linguistic stimuli

Tim is
blicking Kim.
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Neuroscientific Methods

“The spoilt child throw(s) the toy on the ground”
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• Electroencephalography (EEG) 

• Recording of electrical activity 
along the scalp produced by 
the firing of neurons in brain

• Event-Related Potentials (ERPs)

• syntactic and semantic 
processes are partially  revealed 
by patterns in EEGs

• Syntactic Anomaly : P600 or SPS 

• Semantic Anomaly: N400

Syntactic and semantic processes are partially revealed by 
activation patterns in brain

http://en.wikipedia.org/wiki/Electrical
http://en.wikipedia.org/wiki/Electrical
http://en.wikipedia.org/wiki/Neurons
http://en.wikipedia.org/wiki/Neurons
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Brain


Word Segmentation



Identifying Word Boundaries
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ābigməәngkēizētɪŋārɛdapəәl

  
ābigməәngkēizētɪŋārɛdapəәl



Identifying Word Boundaries
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Identifying Word Boundaries

• There are no consistent cues to word boundary in the 
speech signal that children receive
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امروز.باید.بریم.دکتر.واکسن.بزنیم.تا.خوب.بشیم.



Supervised Word Segmentation

• Resources

• Pre-defined lexicon 

• Manually segmented data

• Techniques

• Match the longest possible substrings to lexicon entries

• Use heuristics to resolve ambiguities

• Use training data to evaluate the probabilities of different 
possible segmentations and choose the most probable one

• These models are useful in practice, but irrelevant to infant 
word segmentation
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How do Infants Begin to Segment?

• Isolated words

• About 9% of utterances directed at English-learning infants

• Isolated words might be used to bootstrap word segmentation

• Utterance boundaries

• Unlike word boundaries, utterances are usually marked by pause

• Beginning and end of an utterance can guide word segmentation

• Phonological cues

• phonotactics, allophonic variation, prosodic cues, etc

• Statistical regularities in syllable sequences found in speech
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Phonological Cues

• Phonotactic constraints 

• restrictions on permissible sequences of sounds in language

• English: no /zw/ or /vl/ at the beginning of a word (unlike Dutch)

• Prosodic characteristics

• sound patterns of language, e.g. stress or intonation

• strong/weak stress patterns are dominant in English

• Allophonic cues

• auditory variants of the same phoneme in different positions

• e.g., nitrates vs. night rates
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• Six-month olds are less sensitive to phonological properties 
of words than 7.5-month olds (Jusczyk & Aslin, 1995)

• Sensitivity to Allophonic cues develops more slowly in 
English learners

Infants’ Sensitivity
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They found that 7.5-month-old, but not six-month-old, in-
fants did listen longer to the test passages with the familiar-
ized targets, suggesting that the older infants recognized the
occurrence of the targets in the fluent speech contexts (Fig. 1).
In an additional experiment, 7.5-month-old infants familiar-
ized with two passages containing target words listened longer
to subsequent repetitions of these targets in isolation than to
repetitions of comparable words not in the familiarization
passages. Thus, even when infants’ initial exposure to the tar-
gets occurred in fluent speech passages, they showed some
ability to segment the words from these contexts. Finally, in-
fants familiarized with an item (e.g. tup) phonetically similar
to a target word in the passage (e.g. cup) did not listen longer
to these passages than to control passages. This indicates that
infants respond to a detailed representation of the target words
rather than to just a salient acoustic feature, such as their vowel
quality. Finally, a subsequent investigation suggests that these
segmentation abilities contribute to the development of a
lexicon. Houston et al.16 found that 7.5-month-old infants,
familiarized with target words on one day and tested 24 h
later, listen longer to passages with the targets than to ones
without them. Hence, infants appear to encode information
into memory about the sound patterns of words that occur
frequently in speech directed to them17.

How do infants segment words?

There are several different sources of information in the speech
signal that could be helpful to infants in segmenting words
(Box 1). A number of recent investigations have focused on
the ability of English-learning infants between seven and 11
months of age to use one or more of these sources of infor-
mation in word segmentation. Interest in the possibility that
infants might use a stress-based strategy in segmenting
words was prompted by the fact that they first display sensi-
tivity to the predominant stress pattern of English words
(strong/weak as in fallen) at some point between six and nine

months of age9,18,19. To determine whether infants use such
information in word segmentation, Jusczyk et al.20 examined
how English learners segment words with and without the
predominant stress pattern. They found that 7.5-month-old
infants correctly segmented bisyllabic words with the pre-
dominant stress pattern (i.e. strong/weak), but not words with
a less frequent stress pattern (i.e. weak/strong). Specifically,
7.5-month-old infants familiarized with words such as king-
dom and hamlet listened longer to passages containing these
words than to control passages. By comparison, 7.5-month-
old infants familiarized with words with weak/strong stress
patterns, such as device and guitar, did not give evidence of
detecting these words in passages (Fig. 2). Instead, 7.5-month-
old infants appeared to mis-segment the weak/strong words
at the strong syllable boundary. Hence, when familiarized
with tar and vice, they listened longer to passages containing
guitar and device than they did to control passages. The same
general pattern of greater success in finding targets with
strong/weak, as opposed to weak/strong, stress patterns in
fluent speech contexts was also noted for nine-month-old in-
fants’ abilities to detect a familiarized two-syllable pattern in a
four-syllable context21. However, by 10.5 months, English-
learners do detect familiarized weak/strong words in fluent
speech contexts20. This suggests that by 10.5 months, English
learners do not rely exclusively on stress cues to segment words
from fluent speech. 

English-learning eight-month-old infants are also capable
of exploiting statistical regularities in the input as word seg-
mentation cues22,23. Saffran et al.22 exposed eight-month-old
infants to a two-minute string of continuous synthetic speech
composed of four different three-syllable sequences produced
with flat stress. The order of the syllables within a sequence
was fixed (e.g. tibudo, pabiku). However, each such three-
syllable ‘word’ was followed equally often by one of the three
other ‘words’. Thus, within a word like tibudo, the probability
that /bu/ followed /ti/ was 1.0, which was similar to the likeli-
hood of /do/ following /bu/. However, across word bound-
aries, the probability of a particular syllable following the last
syllable of the preceding word was only 0.33. During the test
phase, infants heard isolated versions of two of the words in
the sequence (e.g. tibudo and pabiku), together with two ‘part-
words’ composed of the last syllable of one word plus the first
two syllables of another word from the familiarization se-
quence (e.g. tudaro and pigola). Note that during the famil-
iarization sequence, the probability of /da/ following /tu/, and
of /go/ following /pi/ was only 0.33. The listening preferences
indicated that the eight-month-old infants did distinguish
the words from the part-words. In particular, they treated the
part-words as novel items (Fig. 3). Hence, when such statisti-
cal regularities are present in the input, infants are able to use
this information to segment possible words from a stream of
speech. 

There is also evidence that by nine months of age, English
learners have begun to determine the way that phonotactic
sequences line up with word boundaries in their language24.
For example, particular sequences of two consonants (i.e. CC
sequences) might be more likely to occur between words
(e.g. /vt/ and /fh/) than within words in English. Other 
CC sequences might be more common within words 
(e.g. /ft/) than between words. Mattys et al.24 tested whether
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Fig. 1. Infants’ segmentation of fluent English speech.
Using listening time as an index of segmentation ability, average
listening times (and standard errors) are shown for 6- and 7.5-
month-old infants familiarized with isolated repetitions of two
words and tested on passages that either included familiar words
(shaded columns) or did not include (open columns) these items.
Only the older infants listened longer to test passages that con-
tained familiarized targets and thus recognized the targets in
fluent speech contexts. (Redrawn from Ref. 15.)
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Distributional Cues

• Statistical regularities in the sequences of syllables found in 
speech can indicate word boundaries

• Methods based on these regularities are language-independent

• Infants as young as 7 months are sensitive to these cues

19

words nitrates and ‘night rates’ to detect these words in fluent
speech contexts25. They familiarized infants with isolated ver-
sions of one of these words and another word (either doctor or
hamlet) and then tested them on passages that either included
or did not include these targets. Although an earlier investi-
gation had shown that two-month-old infants can discrimi-
nate the allophonic differences between nitrates and night
rates26, nine-month-old infants gave no indication of using this
information to locate the familiarized target word in the pass-
ages. Hence, nine-month-old infants familiarized with nitrates
listened equally long to the test passage with night rates as they
did to the one with nitrates. In contrast, 10.5-month-old in-
fants did listen significantly longer to the test passage that
contained the familiarized item. Thus, sensitivity to how allo-
phonic cues are distributed within words seems to develop in
English learners between nine and 10.5 months.

Why multiple cues are necessary for word segmentation
The studies reviewed above indicate that, towards the end of
the first year, English learners are sensitive to a number of
different possible sources of information about word bound-
aries in fluent speech. This is a fortunate development because
none of these sources is sufficient for correctly segmenting
all words from fluent speech. For example, a complete reliance
on prosodic cues, as in metrical segmentation strategy (Box 1),
would lead an English listener to miss the onsets of words
beginning with weak (unstressed) syllables. Similarly, reliance
on statistical regularities without consideration of other speech
cues could cause a listener who knows the word candle to make
segmentation errors in contexts such as ‘can deliver’ or ‘can del-
phiniums thrive here’. Likewise, although /zn/ occurs relatively
infrequently within words, this sequence does occur in business.
Consequently, listeners must draw on some combination of
these potential cues in segmenting words from English speech.

Although more empirical research is needed to confirm the
developmental picture, it appears that stress-based and statisti-
cal cues are available earlier for English learners than are phono-

tactic and allophonic cues. One possible reason for this pro-
gression is that infants need to perform at least a rough par-
titioning of the input into word-sized chunks to learn how
the phonotactic and allophonic cues are distributed with re-
spect to word boundaries20,27. In any case, as infants gain access
to a larger set of possible word segmentation cues, the question
arises as to how infants integrate these different sources of in-
formation. How do infants weigh these different sources? Are
some cues treated as more reliable indicators of word bound-
aries than others, or are the various cues summed in some way?
Many recent models of word recognition have attributed an
important role to existing items in the lexicon in recovering
words from fluent speech (see Ref. 28 for a review; Refs
29–31). Thus, in the long run, many of the potential cues
to word boundaries might be used primarily in ruling out
alternative parses of the speech signal32. 

Segmenting words when extracting meanings
The studies reviewed thus far demonstrate that, towards the
end of their first year, infants have the ability to detect the
sound patterns of familiarized words embedded in fluent
speech. However, the fact that 7.5-month-old infants might
recognize the occurrence of kingdom in a passage does not
entail that they attach any meaning to this sound pattern.
Ultimately, to comprehend sentences, infants will have to re-
cover the meanings of words that they segment from utter-
ances. Although one might expect that infants practiced in
extracting sound patterns will smoothly transfer this ability
to situations in which they must respond to the meanings of
words, this does not appear to be the case. 

Fernald et al. tested English-learning 15-month-old in-
fants in a task in which a target word was embedded in a
sentence33. Specifically, infants were presented with two objects
displayed on video monitors while they heard a sentence in-
cluding the name of one of the objects. Although 15-month-
old infants looked significantly more often at the picture of
the named target when it occurred in the final position of the
sentence, they did not do so when the target occurred in the
middle of the sentence. The finding that the positioning of
the target word in the sentence matters for 15-month-old
infants is important because studies with 7.5-month-olds have
typically varied the sentential position of the target in test
passages15,20 and found no response bias (although Aslin has
found some evidence for an utterance final bias in eight-
month-old infants; R.N. Aslin, unpublished data). In any
case, Fernald et al. found that 18-month-old infants re-
sponded equally well to the targets in the medial and final
positions of sentences. Why, then, do 15-month-old infants
have difficulty with targets in non-final positions? One possi-
bility is that the additional processing demands of associating
a word to the correct picture might tax the word-segmentation
abilities of 15-month-old infants. Fernald et al. suggest that
placing the word in the final position might increase its
salience for the infants, thereby allowing them to segment it.
Some indirect support for this view comes from an investi-
gation of word learning in 14-month-old infants by Stager
and Werker34. They found that the increased demands asso-
ciated with a word-learning task had a detrimental effect on
infants’ speech discrimination capabilities. Indeed, such 
declines in perceptual performance might occur whenever 
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Fig. 3. Segmentation from statistical regularities in speech.
Average listening times (and standard errors) are shown for 
8-month-old infants familiarized with a continuous sequence of
three-syllable items (novel ‘words’) and then tested with two of
these familiar items (shaded) and two items composed of parts
of two words (open). The infants treated part-words as novel
items and thus distinguished them from whole words. (Redrawn
from Ref. 22.)
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Transitional Properties

• Experimental findings suggest that children use transitional 
probabilities between words and syllables

•                                     

•                                                  bigrīpapəәl  bigrīpapəәl

• word level:    P(apple|ripe) > P(apple|gripe)

• syllable level:   P(rīp|big) > P(grīp|bi)

20

big ripe apple

bi gripe apple 



Unsupervised Word Segmentation

• Transitions between linguistic units within words are more 
predictable than transitions across word boundaries 

• Other statistics measuring the degree of association 
between adjacent units or groups of units 

• Mutual information, n-gram frequencies, boundary entropy, etc

• General strategy:

• calculate the chosen statistics at each possible boundary point

• insert a boundary at every local minimum
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Case Study: Harris (1955)

• Input: utterance as a phoneme sequence

• Algorithm:

• Measure number of successors of each subsequence of the 
utterance

• How many different phoneme types follow a subsequence?

• Segment utterance at points where the number of successors 
reaches a peak
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Case Study: Harris (1955)

• Test utterance:     /hiyzklevəәr/

23

Phoneme subsequences # of successors

/h/ 9



Case Study: Harris (1955)

• Test utterance:     /hiyzklevəәr/
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Phoneme subsequences # of successors

/h/ 9

/hi/ 14



Case Study: Harris (1955)

• Test utterance:     /hiyzklevəәr/
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Phoneme subsequences # of successors

/h/ 9

/hi/ 14

/hiy/ 29

/hiyz/ 29

/hiyzk/ 11

/hiyzkl/ 7

/hiyzkle/ 8

/hiyzklev/ 1

/hiyzklevəә/ 1

/hiyzklevəәr/ 28



Case Study: Harris (1955)

• Test utterance:     /hiyzklevəәr/
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Phoneme subsequences # of successors

/h/ 9

/hi/ 14

/hiy/ 29

/hiyz/ 29

/hiyzk/ 11

/hiyzkl/ 7

/hiyzkle/ 8

/hiyzklev/ 1

/hiyzklevəә/ 1

/hiyzklevəәr/ 28



Case Study: Harris (1955)

• Test utterance:     /hiy.z.klevəәr./
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Phoneme subsequences # of successors

/h/ 9

/hi/ 14

/hiy/ 29

/hiyz/ 29

/hiyzk/ 11

/hiyzkl/ 7

/hiyzkle/ 8

/hiyzklev/ 1

/hiyzklevəә/ 1

/hiyzklevəәr/ 28



Case Study: Brent (1999)

• Input: unsegmented corpus of phoneme sequences

• Approach:

• Segment input incrementally, one utterance at a time

• Assume words in an utterance are generated independently

• word unigram

• Assume phonemes in a word are generated independently

• no phonotactics
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Case Study: Brent (1999)

• At each step (t):

• C(t-1): part of corpus segmented so far

• U(t): current utterance 

• Algorithm:

• Hypothesize words in U(t) by considering a word-end e at each 
position

• For each e, find best start s as the one with highest score

• Starting from end of utterance as e, insert a boundary at its best 
start s

29



Case Study: Brent (1999)

• U(t):   /yoōwänttoōsēðēboŏk/

30

w(1:e)



Case Study: Brent (1999)

• U(t):   /yoōwänttoōsēðēboŏk/
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w(2:e)



Case Study: Brent (1999)

• U(t):   /yoōwänttoōsēðēboŏk/
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w(3:e)



Case Study: Brent (1999)

• U(t):   /yoōwänttoōsēðēboŏk./
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Case Study: Brent (1999)

• U(t):   /yoōwänttoōsēðē.boŏk./
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Case Study: Brent (1999)

• U(t):   /yoōwänttoōsē.ðē.boŏk./
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Connectionist Models

• Neural networks have been used to segment 
representations of speech using distributional cues

• Input:

• artificial corpora

• phonological transcriptions of natural speech

• Common architecture: Simple Recurrent Network (SRN)

• Recurrence allows predictions based on context

• But it is difficult to determine exactly what part of context is 
useful for prediction
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Case Study: Elman (1990)
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Hidden units

Output units

Input units Context units

input: word representation

Network is trained to predict 
the next letter as output

A copy of the hidden units is kept as context



Case Study: Elman (1990)

• Input: an artificial sequence of letters

• Representation of letters: vectors of phonological features

38

b -> ba
d -> dii
g -> guuu

188 ELMAN 

TABLE 1 
Vector Definitions of Alphabet 

Consonant Vowel lnterruoted Hiah Bock Voiced 

b I 1 0 1 0 0 
cl 1 0 1 1 0 

g I 1 0 1 0 1 a 0 1 0 0 1 : ; 
f 1 0 1 0 
u 1 0 1 1 

Thus, an initial sequence of the form dbgbddg., . gave rise to the final se- 
quence diibaguuubadiidiiguuu . . . (each letter being represented by one of 
the above 6-bit vectors). The sequence was semi-random; consonants occurred 
randomly, but following a given consonant, the identity and number of 
following vowels was regular. 

The basic network used in the XOR simulation was expanded to provide 
for the 6-bit input vectors; there were 6 input units, 20 hidden units, 6 out- 
put units, and 20 context units. 

The training regimen involved presenting each 6-bit input vector, one at a 
time, in sequence. The task for the network was to predict the next input. 
(The sequence wrapped around, that the first pattern was presented after 
the last.) The network was trained on 200 passes through the sequence. It 
was then tested on another sequence that obeyed the same regularities, but 
created from a different initial randomizaiton. 

The error signal for part of this testing phase is shown in Figure 4. Target 
outputs are shown in parenthesis, and the graph plots the corresponding 
error for each prediction. It is obvious that the error oscillates markedly; at 
some points in time, the prediction is correct (and error is low), while at 
other points in time, the ability to predict correctly is quite poor. More pre- 
cisely, error tends to be high when predicting consonants, and low when 
predicting vowels. 

Given the nature of the sequence, this behavior is sensible. The conso- 
nants were ordered randomly, but the vowels were not. Once the network 
has received a consonant as input, it can predict the identity of the following 
vowel. Indeed, it can do more; it knows how many tokens of the vowel to 
expect. At the end of the vowel sequence it has no way to predict the next 
consonant; at these points in time, the error is high. 

This global error pattern does not tell the whole story, however. Remem- 
ber that the input patterns (which are also the patterns the network is trying 
to predict) are bit vectors. The error shown in Figure 4 is the sum squared 
error over all 6 bits. Examine the error on a bit-by-bit basis; a graph of the 
error for bits [l] and [4] (over 20 time steps) is shown in Figure 5. There is a 



Case Study: Elman (1990)
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FINDING STRUCTURE IN TIME 
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Figure 4. Graph of root mean squared error in letter prediction task. Labels indicate the 
correct output prediction at each point in time. Error is computed over the entire output 
vector. 

striking difference in the error patterns. Error on predicting the first bit is 
consistently lower than error for the fourth bit, and at all points in time. 
Why should this be so? 

The first bit corresponds to the features Consonant; the fourth bit cor- 
responds to the feature High. It happens that while all consonants have the 
same value for the feature Consonant, they differ for High. The network 
has learned which vqwels follow which consonants; this is why error on 
vowels is low. It has also learned how many vowels follow each consonant. 
An interesting corollary is that the network also knows how soon to expect 
the next consonant. The network cannot know which consonant, but it can 
predict correctly that a consonant follows. This is why the bit patterns for 
Consonant show low error, and the bit patterns for High show high error. 
(It is this behavior which requires the use of context units; a simple feed- 
forward network could learn the transitional probabilities from one input to 
the next, but could not learn patterns that span more than two inputs.) 



Association-based Models: Limitations

• Input representations in different models are usually not 
comparable

• Utterance boundaries are essential to learning, but infants 
can segment without utterance boundaries

• The assumption that words are generated independently of 
each other is limiting, and affecting the performance

• Natural language displays many complex dependencies

• These models use unprincipled methods of constraining the 
number of parameters (words) 

• A better way is by using a Bayesian prior
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Bayesian Models

• The input phoneme sequence is “generated” by a 
“grammar”, which has a particular distribution

• the parameters of the distribution can be estimated from the 
generated data, that is, the observed utterances

• A hypothesized utterance:

41
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U

look

the

W U

at

UW

W U

W

doggie

Figure 5.1: A hypothetical utterance, as parsed by the unigram DP word model.

h1:

UW

U

W

w3

w2

h2:

W

U

w1 = w2.w3

Figure 5.2: The two hypotheses considered by the unigram sampler, where the possible
boundary location is between w2 and w3. Dashed lines indicate possible additional structure.
Rules in bold differ between h1 and h2; all other rules are part of h−.



Case Study: Goldwater (2007)

• Unigram word segmentation:

• Bigram word segmentation:

42

67

U

look

the

W U
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UW
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doggie

Figure 5.1: A hypothetical utterance, as parsed by the unigram DP word model.

h1:

UW

U

W

w3

w2

h2:

W

U

w1 = w2.w3

Figure 5.2: The two hypotheses considered by the unigram sampler, where the possible
boundary location is between w2 and w3. Dashed lines indicate possible additional structure.
Rules in bold differ between h1 and h2; all other rules are part of h−.
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h1: Uwl

Uw1

Wwr
Uwr

w1 =w2.w3

Ww1

h2: Uwl

Ww2
Uw2

Ww3
Uw3

Uwr
w3 Wwr

w2

Figure 5.10: The portions of the derivation trees that differ between the two hypotheses
considered by the Gibbs sampler for the HDP model.

where r(wi,wj) is shorthand for the grammar rule Uwi → Wwj Uwj and all counts are with
respect to h−. The terms for the W productions have been left out, since they all have
probability 1. Similarly, the posterior probability of h2 is

P (h2 |h
−, d)

= P (r(wl,w2) |h
−, d) · P (r(w2,w3) | r(wl,w2), h

−, d) · P (r(w3,wr) | r(wl,w2), r(w2,w3), h
−, d)

=
n(wl,w2) + α1P1(w2 |h−, d)

nwl
+ α1

·
n(w2,w3) + I(wl = w2 = w3) + α1P1(w3 |h−, d)

nw2 + 1 + α1

·
n(w3,wr) + I(wl = w3, w2 = wr) + I(w2 = w3 = wr) + α1P1(wr |h−, d)

nw3 + 1 + I(w2 = w4) + α1
(5.12)

P1(.) can be calculated exactly using Equation 5.10, but this requires explicitly tracking and
sampling the assignment of words to tables, which is computationally expensive. Instead,
I used an approximation, replacing each table count twi by its expected value E[twi ]. In a
DP(α, P ), the expected number of CRP tables for an item occurring n times is α log n+α

α
(Antoniak, 1974), so

E[twi ] = α1

∑

j

log
n(wj ,wi) + α1

α1

This approximation requires only the bigram counts, which must be tracked anyway.

5.5.3 Experiments

I used the same basic setup for my experiments with the HDP model as I used for the
DP model. The model was initialized by treating each utterance as a single word9. I
experimented with different values of α0 and α1, keeping p# = .5 throughout. Some results
of these experiments are plotted in Figure 5.11. In the bigram model, there is now a positive
correlation between type and token accuracy, and with appropriate parameter settings, both
are higher than in the unigram model (dramatically so, for tokens). High-frequency words
are segmented correctly far more often than in the unigram model. The best values of α0

are much larger than in the unigram model, presumably because all unique word types must

9This initialization is different from the random initialization used for most of the DP model experiments.
Based on the results of those experiments, and preliminary analysis of the HDP model results, it was
assumed that initialization would not affect the results reported here. More complete later analysis
(described below) supports this assumption.



Hierarchical Bayesian Models

• Findings: 

• Models incorporating a unigram assumption tend to under-
segment data

• Incorporating sequential dependencies into a model of word 
segmentation can greatly reduce this problem

• High transitional probabilities can occur in language 

• either because there is no word boundary

• or because there is a boundary between two words that 
frequently co-occur
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Open Questions

• Computational level: which information is important?

• It seems that children use a variety of cues for segmentation

• Phonemic cues, statistical regularities, utterance boundaries

• But they can segment in the absence of any of these cues

• Algorithmic level: what is the most plausible strategy?

• How are these cues combined?

• Association-based models have poor performance

• Bayesian models do not explain human errors
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