Language Acquisition Fall 2010/Winter 2011

Model Evaluation & Word Segmentation (December 16, 2010)

Afra Alishahi, Heiner Drenhaus

Computational Linguistics and Phonetics Saarland University

Evaluation of Computational Models

- Cognitive models cannot be solely evaluated based on their accuracy in performing a task
 - The behavior of the model must be compared against observed human behavior
 - The errors made by humans must be replicated and explained
- Evaluation of cognitive models depends highly on experimental studies of language

Language Acquisition Models: Evaluation

- What humans know about language can only be estimated/ evaluated through how they use it
 - Language processing and understanding
 - Language production
- Analysis of child production data yields valuable clues
 - Developmental patterns such as error and recovery
- Comprehension experiments reveal biases and preferences
 - knowledge sources that children exploit, and their biases towards linguistic cues

Language Production Data

- CHILDES database (MacWhinney, 1995)
 - An ever-growing collection of the recorded interactions (text, audio, video) between children and their parents

@Languages: 2 en CHI Adam Target Child, URS Ursula Bellugi Investigator, MOT Mother, ... 3 @Participants: @ID: enlbrownlCHII3;1.26lmalelnormallmiddle classlTarget Childll 4 5 @ID: enlbrownlPAUIIIIBrotherII 6 @ID: enlbrownlMOTIIIIMotherII 9 @Date: 30-AUG-1963 @Time Duration: 10:30-11:30 10 11 *CHI: one busses. 12 112IQUANT 210IROOT 312IPUNCT 14 ***URS**: one. 110IROOT 211IPUNCT 17 *CHI: two busses. 112IOUANT 210IROOT 312IPUNCT 20 *CHI: three busses. 22 112IOUANT 210IROOT 312IPUNCT

Experimental Methods

- Online methodologies
 - Reading time studies: measure relative processing difficulties
 - Eye-tracking studies: Monitor gaze as people hear a spoken utterance; anticipatory eye-movements reflect interpretation
 - Visual world paradigm: monitor subjects' eye movements to visual stimuli as they listen to an unfolding utterance
- Offline methodologies
 - Preferential looking studies: monitor infants' preferences of certain scene depictions based on linguistic stimuli
 - Act-out scenarios: describe an event and ask the child to act it out using a set of toys and objects
 - Elicitation tasks: persuade the child to describe an event or action

Reading Times

• Reading the whole sentence

The man held at the station was innocent

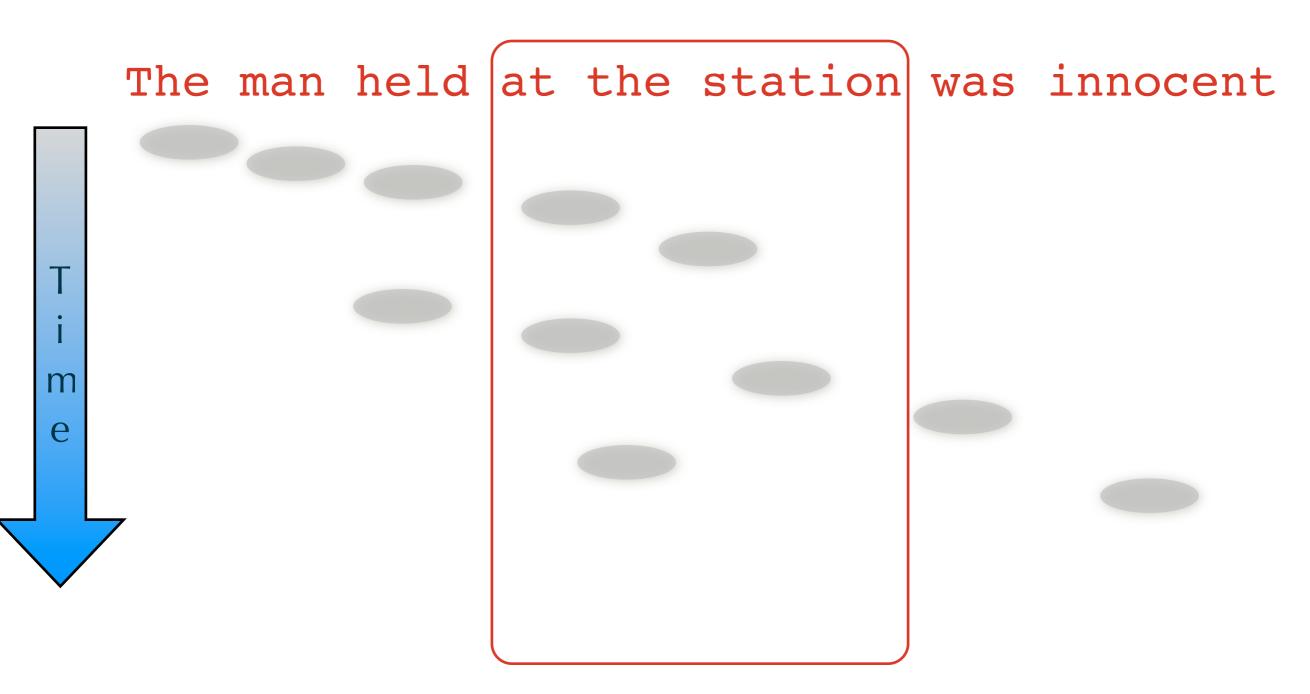
• Self-paced reading, central presentation

isthebliebt

• Self-paced reading, moving window

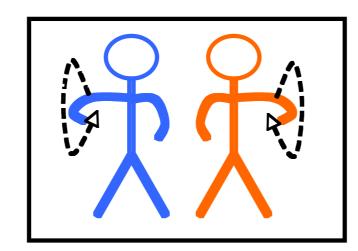
The man held at the station was innocent

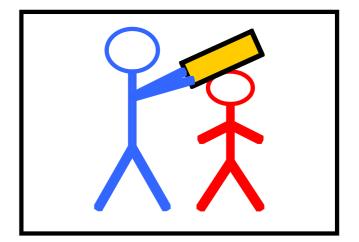
Eye-tracking



Preferential-looking Studies

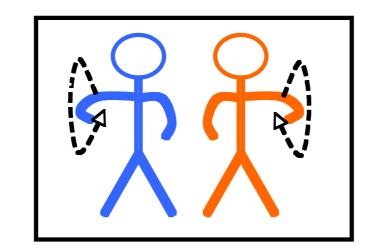
• Monitor infants' preference of visual stimuli based on linguistic stimuli

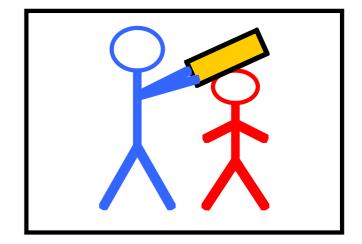




Preferential-looking Studies

• Monitor infants' preference of visual stimuli based on linguistic stimuli

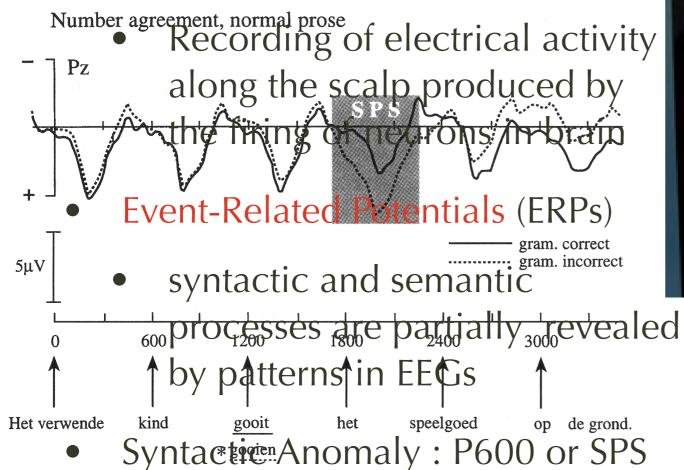


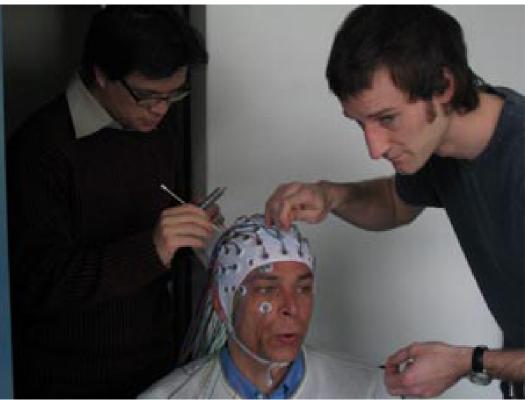


Neuroscientific Methods

Syntactic and semantic processes are partially revealed by activation patterns in brain

• Electroencephalography (EEG)



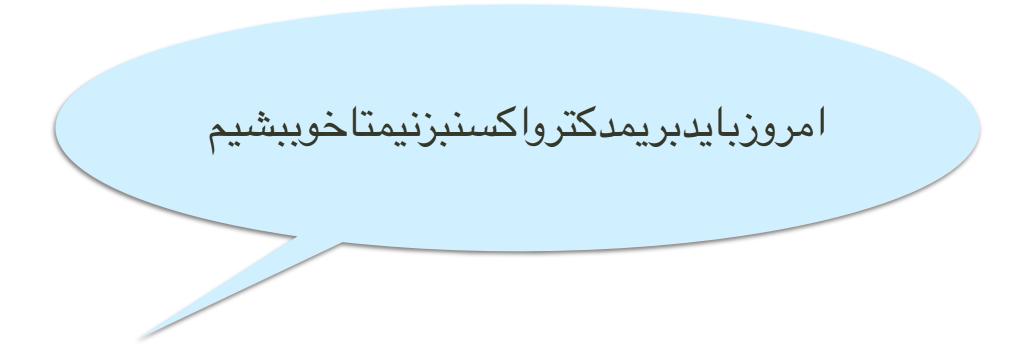


"The spoilt child throw(s) the toy on the ground" • Semantic Anomaly: N400 Word Segmentation

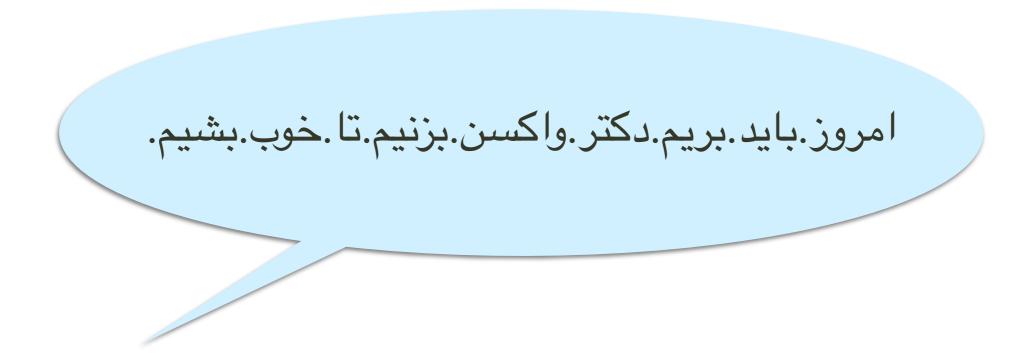
Identifying Word Boundaries

ā•big•məngkē•iz•ētīŋ•ā•rɛd•apəl

Identifying Word Boundaries



Identifying Word Boundaries



• There are no consistent cues to word boundary in the speech signal that children receive

Supervised Word Segmentation

• Resources

- Pre-defined lexicon
- Manually segmented data
- Techniques
 - Match the longest possible substrings to lexicon entries
 - Use heuristics to resolve ambiguities
 - Use training data to evaluate the probabilities of different possible segmentations and choose the most probable one
- These models are useful in practice, but irrelevant to infant word segmentation

How do Infants Begin to Segment?

• Isolated words

- About 9% of utterances directed at English-learning infants
- Isolated words might be used to bootstrap word segmentation
- Utterance boundaries
 - Unlike word boundaries, utterances are usually marked by pause
 - Beginning and end of an utterance can guide word segmentation
- Phonological cues
 - phonotactics, allophonic variation, prosodic cues, etc
- Statistical regularities in syllable sequences found in speech

Phonological Cues

- Phonotactic constraints
 - restrictions on permissible sequences of sounds in language
 - English: no /zw/ or /vl/ at the beginning of a word (unlike Dutch)
- Prosodic characteristics
 - sound patterns of language, e.g. stress or intonation
 - strong/weak stress patterns are dominant in English
- Allophonic cues
 - auditory variants of the same phoneme in different positions
 - e.g., nitrates vs. night rates

Infants' Sensitivity

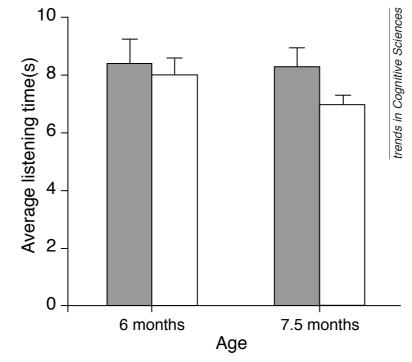
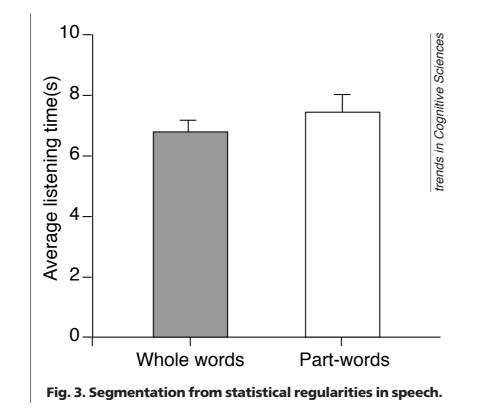


Fig. 1. Infants' segmentation of fluent English speech.

- Six-month olds are less sensitive to phonological properties of words than 7.5-month olds (Jusczyk & Aslin, 1995)
- Sensitivity to Allophonic cues develops more slowly in English learners

Distributional Cues

- Statistical regularities in the sequences of syllables found in speech can indicate word boundaries
 - Methods based on these regularities are language-independent
 - Infants as young as 7 months are sensitive to these cues



Transitional Properties

• Experimental findings suggest that children use transitional probabilities between words and syllables

- word level: P(*apple*|*ripe*) > P(*apple*|*gripe*)
- syllable level: P(rīp|big) > P(grīp|bi)

Unsupervised Word Segmentation

- Transitions between linguistic units within words are more predictable than transitions across word boundaries
- Other statistics measuring the degree of association between adjacent units or groups of units
 - Mutual information, n-gram frequencies, boundary entropy, etc
- General strategy:
 - calculate the chosen statistics at each possible boundary point
 - insert a boundary at every local minimum

- Input: utterance as a phoneme sequence
- Algorithm:
 - Measure number of successors of each subsequence of the utterance
 - How many different phoneme types follow a subsequence?
 - Segment utterance at points where the number of successors reaches a peak

Phoneme subsequences	# of successors
/h/	9

Phoneme subsequences	# of successors
/h/	9
/h/ /hi/	14

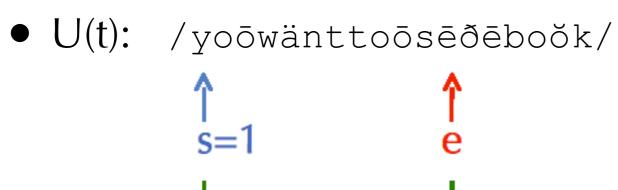
Phoneme subsequences	# of successors		
/h/	9		
/hi/	14		
/hiy/	29		
/hiyz/	29		
/hiyzk/	11		
/hiyzkl/	7		
/hiyzkle/	8		
/hiyzklev/	1		
/hiyzklevə/	1		
/hiyzklevər/	28		

Phoneme subsequences	# of successors		
/h/	9		
/hi/	14		
/hiy/	29		
/hiyz/	29		
/hiyzk/	11		
/hiyzkl/	7		
/hiyzkle/	8		
/hiyzklev/	1		
/hiyzklevə/	1		
/hiyzklevər/	28		

Phoneme subsequences	# of successors		
/h/	9		
/hi/	14		
/hiy/	29		
/hiyz/	29		
/hiyzk/	11		
/hiyzkl/	7		
/hiyzkle/	8		
/hiyzklev/	1		
/hiyzklevə/	1		
/hiyzklevər/	28		

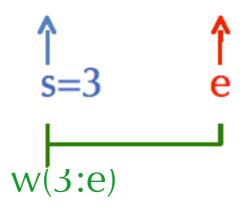
- Input: unsegmented corpus of phoneme sequences
- Approach:
 - Segment input incrementally, one utterance at a time
 - Assume words in an utterance are generated independently
 - word unigram
 - Assume phonemes in a word are generated independently
 - no phonotactics

- At each step (t):
 - C(t-1): part of corpus segmented so far
 - U(t): current utterance
- Algorithm:
 - Hypothesize words in U(t) by considering a word-end **e** at each position
 - For each **e**, find best start **s** as the one with highest score
 - Starting from end of utterance as **e**, insert a boundary at its best start **s**

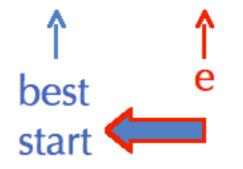


• U(t): /yoōwänttoōsēðēboŏk/

• U(t): /yoōwänttoōsēðēboŏk/



• U(t): /yoōwänttoōsēðēboŏk./



• U(t): /yoōwänttoōsēðē.boŏk./

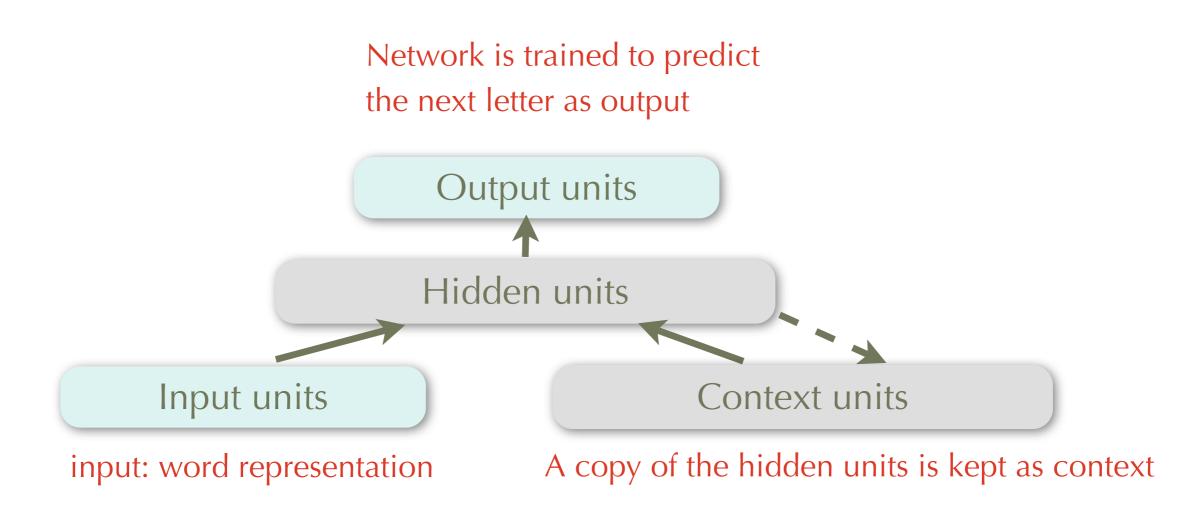


• U(t): /yoōwänttoōsē.ðē.boŏk./

Connectionist Models

- Neural networks have been used to segment representations of speech using distributional cues
- Input:
 - artificial corpora
 - phonological transcriptions of natural speech
- Common architecture: Simple Recurrent Network (SRN)
- Recurrence allows predictions based on context
- But it is difficult to determine exactly what part of context is useful for prediction

Case Study: Elman (1990)



Case Study: Elman (1990)

• Input: an artificial sequence of letters

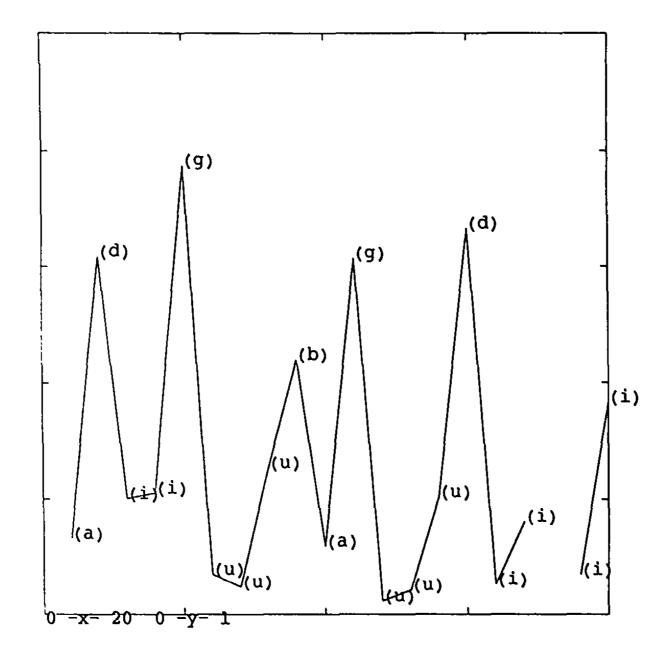
b -> ba d -> dii g -> guuu

• Representation of letters: vectors of phonological features

	Co	onsonant	Vowel	Interrupted	High	Back	Voiced	
Ь	[1	0	١	0	0	١	
d	[1	0	1	1	0	1	
g	[1	0	1	0	1	1	
a	[0	1	0	0	1	1	
1]	0	1	0	1	0	1	
U]	0	1	0	1	1	1	

Vector Definitions of Alphabet

Case Study: Elman (1990)

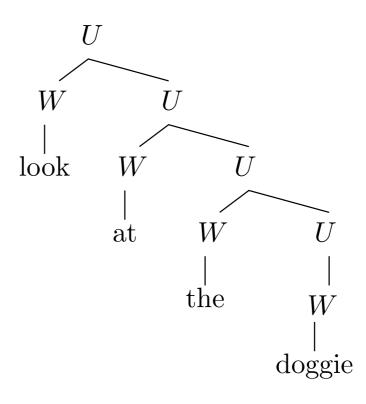


Association-based Models: Limitations

- Input representations in different models are usually not comparable
- Utterance boundaries are essential to learning, but infants can segment without utterance boundaries
- The assumption that words are generated independently of each other is limiting, and affecting the performance
 - Natural language displays many complex dependencies
- These models use unprincipled methods of constraining the number of parameters (words)
 - A better way is by using a Bayesian prior

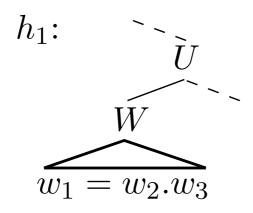
Bayesian Models

- The input phoneme sequence is "generated" by a "grammar", which has a particular distribution
- the parameters of the distribution can be estimated from the generated data, that is, the observed utterances
- A hypothesized utterance:

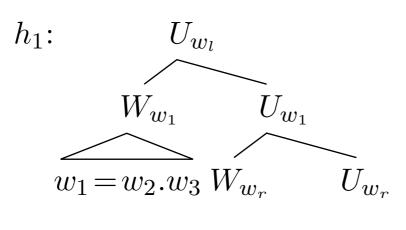


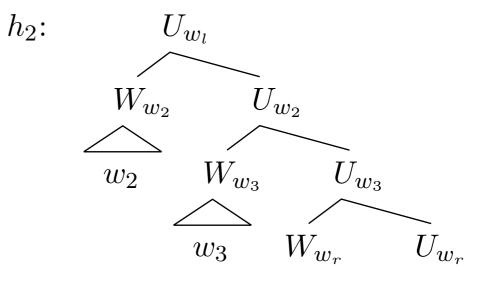
Case Study: Goldwater (2007)

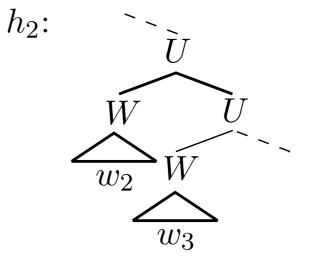
• Unigram word segmentation:



• **Bigram** word segmentation:







Hierarchical Bayesian Models

- Findings:
 - Models incorporating a unigram assumption tend to undersegment data
 - Incorporating sequential dependencies into a model of word segmentation can greatly reduce this problem
- High transitional probabilities can occur in language
 - either because there is no word boundary
 - or because there is a boundary between two words that frequently co-occur

Open Questions

- Computational level: which information is important?
 - It seems that children use a variety of cues for segmentation
 - Phonemic cues, statistical regularities, utterance boundaries
 - But they can segment in the absence of any of these cues
- Algorithmic level: what is the most plausible strategy?
 - How are these cues combined?
 - Association-based models have poor performance
 - Bayesian models do not explain human errors