Language Acquisition Fall 2010/Winter 2011

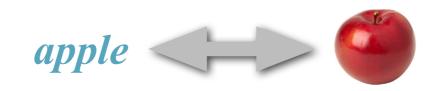
Learning Word Meanings

Afra Alishahi, Heiner Drenhaus

Computational Linguistics and Phonetics Saarland University

Learning Words

• Learning the meaning of words: associating a mental representation, or concept, with a word form



Challenges of Word Learning

• Sentential context

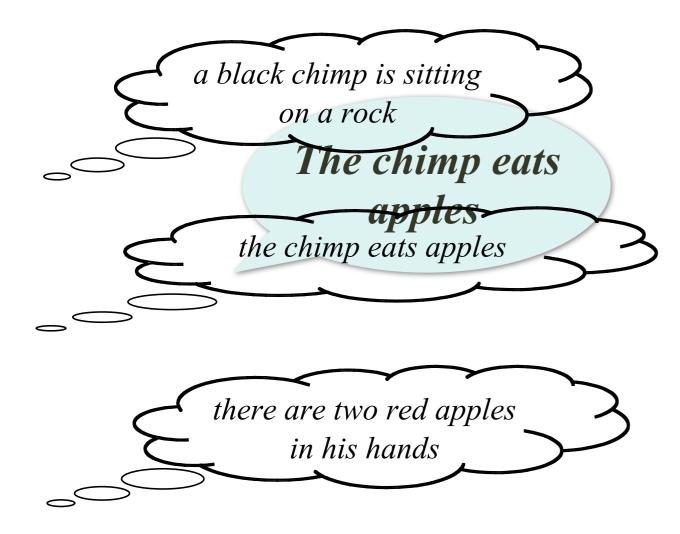
- Most words are not used in isolation, but in a a multi-word utterance
- Referential uncertainty
 - Learners may perceive aspects of a scene are unrelated to the utterance they hear

• Noise

• Error in perception or interpretation of the heard utterance or the observed scene

Sentential Context

Referential Uncertainty



Perception Error (Noise)

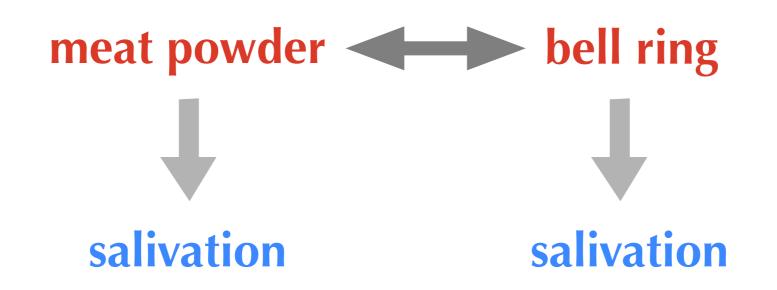
Suggested Learning Mechanisms

• Associative learning

- Simple associative mechanisms are used to map a word form with a concept
- Referential learning
 - A variety of attention mechanisms are used to narrow down the intended meaning
- Cross-situational learning
 - Inferring correct word-meaning mappings by observing regularities across usages of a word

Associative Learning

- Ideas and experiences reinforce one another
 - a new word form may be learned through repeated association to an already learned concept
- Classic conditioning, e.g. Pavlov's dog:



Referential Learning

- Using specific biases for restricting the referents
 - Whole object bias: a novel word is likely to refer to the entirety of an object
 - Taxonomic bias: labels refer to objects of the same kind (often basic-level categories)
- Using social and visual cues
 - Joint attention through pointing or gaze helps narrow down possible referents of a novel label

Cross-situational Learning

• Detecting common meaning elements across several usages of a word:

kitty is playing with yarn

Sam is knitting the green yarn

Developmental Patterns

- Vocabulary spurt
 - Vocabulary learning is slow at the early stages, then proceeds to a rapid pace
- Fast mapping
 - Young children can map a novel word to a novel object in a familiar context
- Second labels
 - Early on, children show difficulty in learning homonymous and synonymous words (i.e., one-to-many and many-to-one mappings)

Vocabulary Spurt

- Following a slow start, rate of word learning rapidly increases
 - Usually around the time the child's vocabulary has about 50 words
- Vocabulary spurt is suggested to arise from a qualitative change in the nature of lexical acquisition, such as
 - shift from associative to referential learning
 - sudden realization that objects have names
 - development of categorization aibilities
 - onset of word learning constraints

Fast Mapping

Can you show me the dax?

- Young children can easily determine the referent of a novel word in a familiar context
- Fast mapping is attributed to a specialized mechanism:
 - principle of Mutual Exclusivity
 - bias to map novel names to nameless objects
 - change in children's underlying word learning mechanism

Second Labels

- Young children exhibit difficulty in learning synonyms
 - one-to-many and many-to-one mappings are hard at first

- Suggestions:
 - Children have an (innate or learned) bias towards one-to-one mappings
 - They must overcome this bias in order to learn synonymous and homonymous words

How to Explain These Patterns?

- A change in the underlying learning mechanism?
 - A shift from associative to referential learning
- Task-specific biases and constraints?
 - Principle of Mutual Exclusivity: words pick out mutually exclusive concept categories
 - Principle of Contrast: every two word forms contrast in meaning
 - Name-Nameless Category Principle (NjC): children tend to find names for nameless objects/categories
- Statistical properties of the input and the learning process explain the changing behaviour of children?

Computational Models of Word Learning

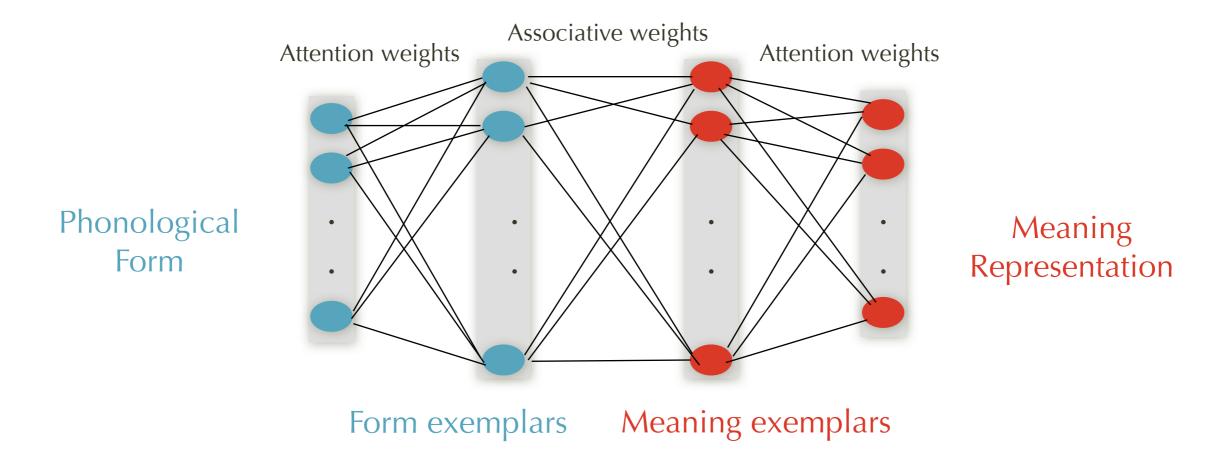
- Computational modeling is a powerful tool for investigating the hypothesized mechanisms of word learning
 - Reproduction: does the model imitate the experimental patterns observed in children?
 - Consistency: does the model need a change in the underlying mechanism to account for the observed patterns?
 - Realistic input: can the model perform on realistic data, containing noise and referential uncertainty?

Overview of the Existing Computational Models of Word Learning

- Implementing biases and constraints in a symbolic framework, using artificially generated input (e.g. Siskind 1996)
- Learning associations btw a word form and its meaning from isolated, simplified word usages, often in a connectionist framework (e.g. Regier 2005, Li et al. 2004, 2007)
- Probabilistic interpretation of cross-situational learning (e.g. Yu 2005, Fazly et al. 2008)
- Incorporating attention mechanisms such as intentional and social cues (e.g. Yu 2006, Frank et al. 2007, Yu and Ballard 2008)
- Generalizing category meaning from examples of word usages (e.g. Xu and Tenenbaum 2007)

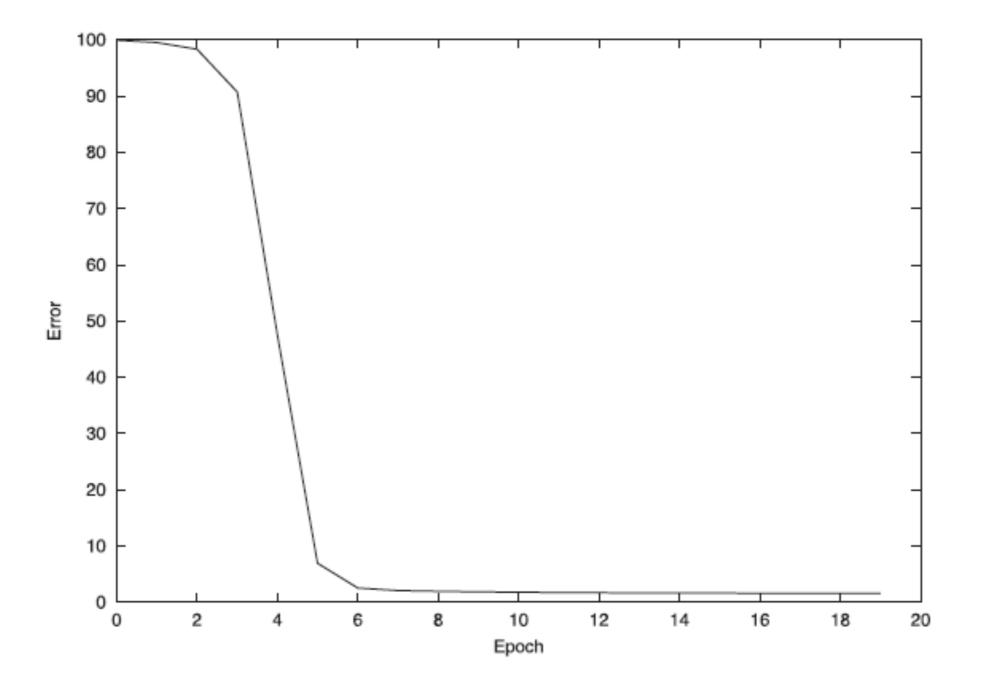
Case Study: Regier (2005)

• An associative, exemplar-based model

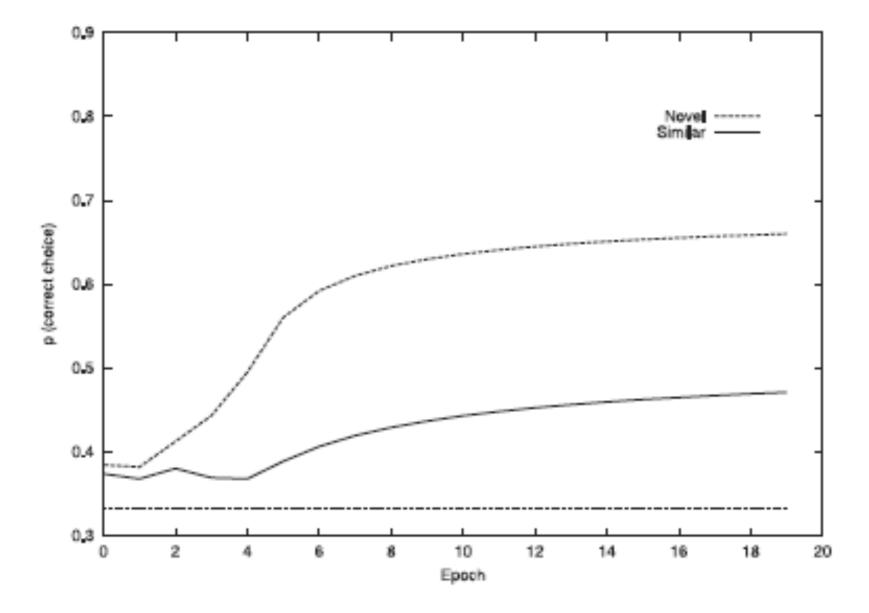


- Phonological form: a vector of phonological features (e.g. voicing)
- Meaning representation: a vector of semantic features (e.g. shape)

Regier (2005): Ease of Learning

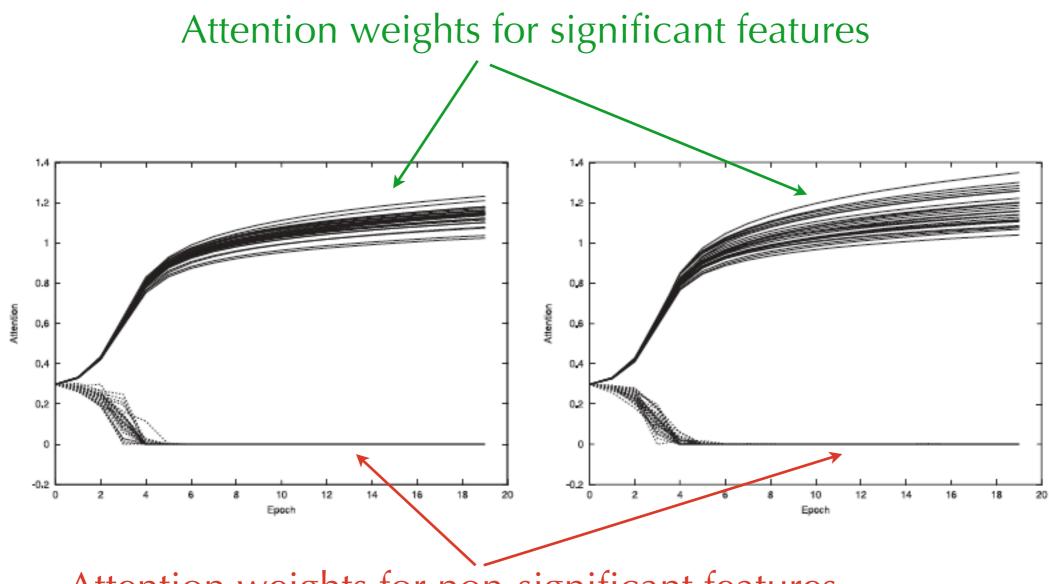


Regier (2005): Learning Second Labels



• "Similar" is a new meaning for an existing word (synonymy)

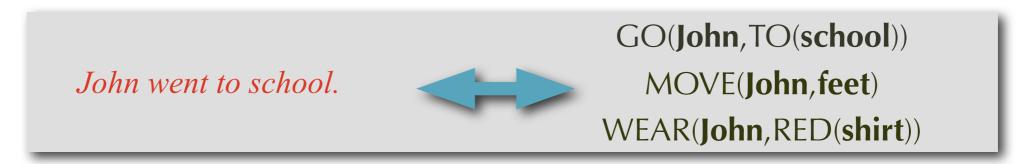
Regier (2005): Honing of Form and Meaning



Attention weights for non-significant features

Case Study: Siskind (1996)

- A symbolic model of cross-situational learning
 - Input: artificially generated sentence and scene representations



• Meaning representation: two sets of symbols for each word

words	Necessary meanings	Possible meanings
John	{ John }	{John,ball}
took	{CAUSE}	{CAUSE,WANT,GO,TO, arm }

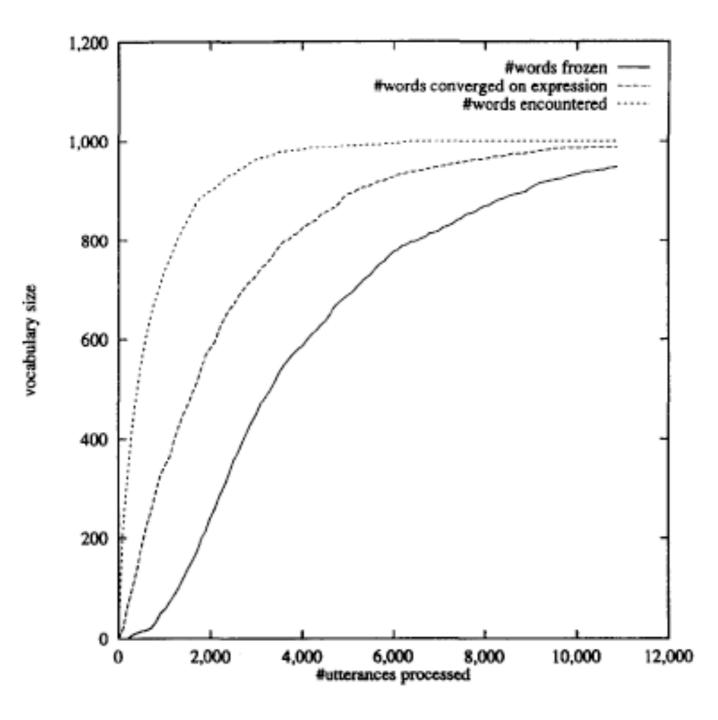
Case Study: Siskind (1996)

- Learning mechanism:
 - Start with empty N and P sets for all words
 - For each word in a new sentence update N & P according to the specific rules
 - Declare a word learned when N=P for that word

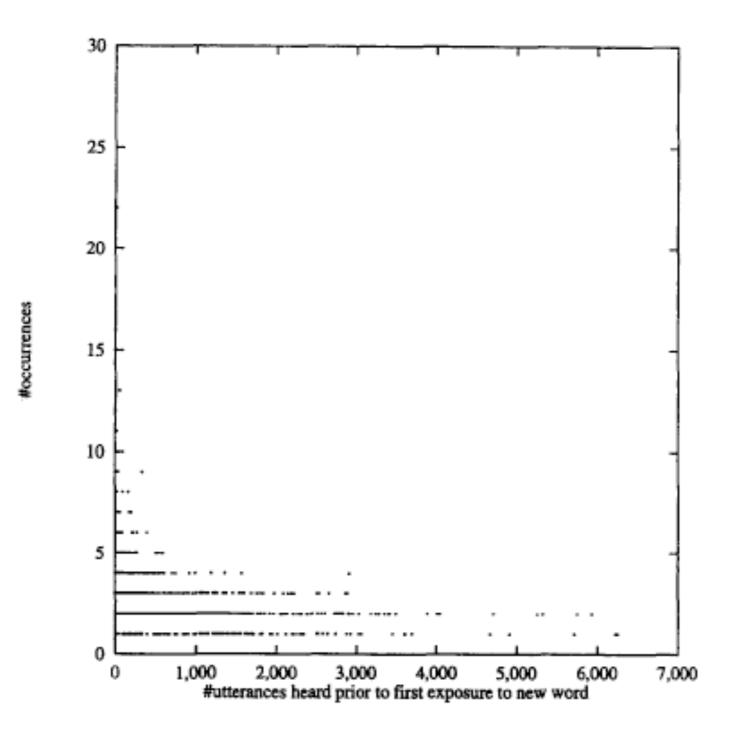
• A sample rule:

For each word symbol in the utterance, rule out any conceptual symbols that do not appear in some remaining utterance meaning

Siskind (1996): Learning Curves

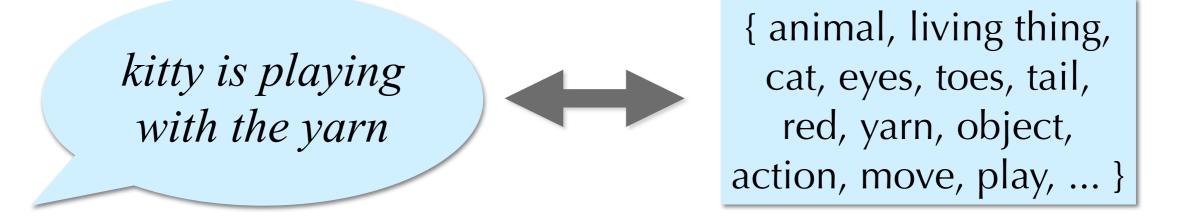


Siskind (1996): Age of Exposure Effects



Case Study: Fazly et al., 2008

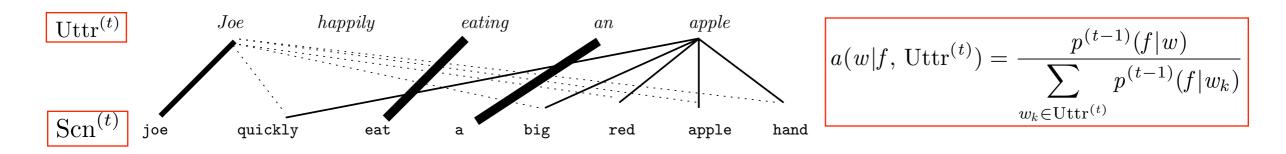
- A probabilistic, incremental model
 - Input: a sequence of utterance-scene pairs from CHILDES:



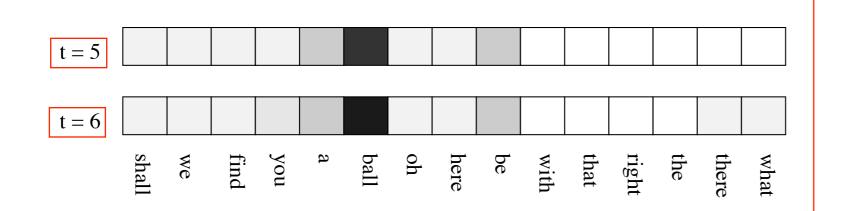
- Meaning of a word: a probability distribution over all semantic features, or p(.|w)
- Word acquisition score: a measure of how closely the meaning of a word resembles its true meaning

Fazly et al. (2008): Learning Mechanism

- For every new pair of scene and utterance, $(Uttr^{(t)}, Scn^{(t)})$
 - 1. Alignment: use previously learned meaning associations to align each word in utterance with each meaning element from the scene

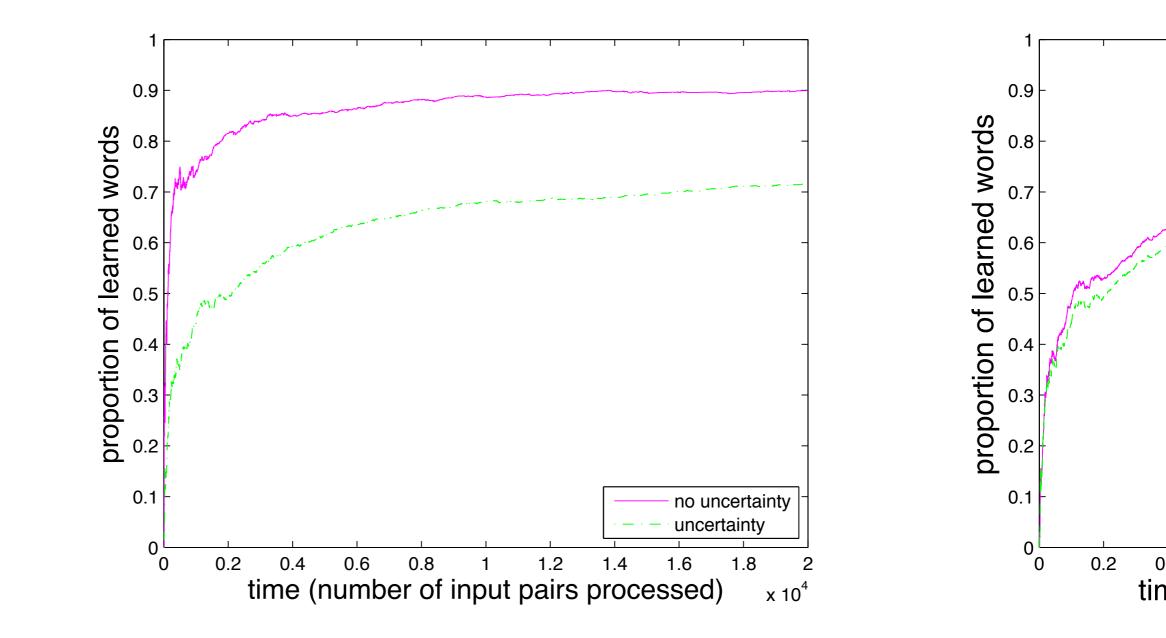


2. Update: use these alignments to update the probabilistic associations between a word and its meaning elements

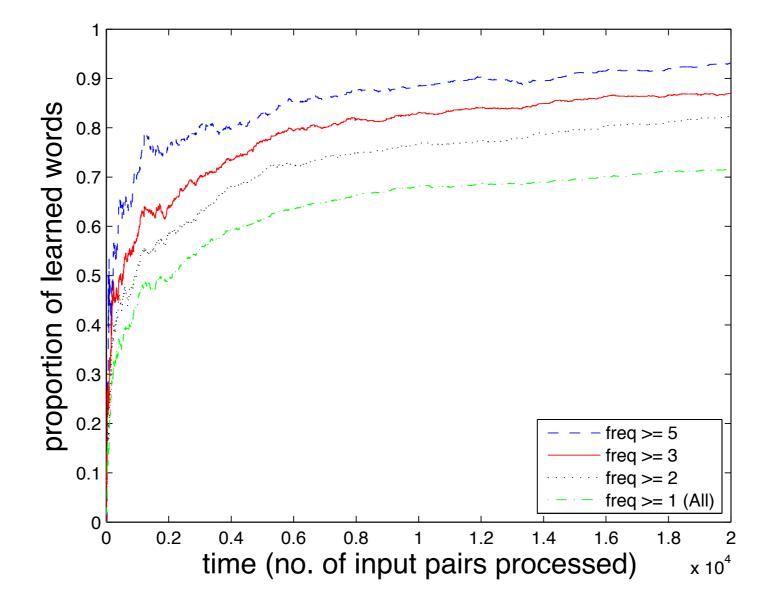


$$\operatorname{assoc}^{(t)}(w, f) = \operatorname{assoc}^{(t-1)}(w, f)$$
$$+a(w|f, \operatorname{Uttr}^{(t)})$$
$$p^{(t)}(f|w) = \frac{\operatorname{assoc}^{(t)}(f, w)}{\sum_{f_j \in \mathcal{F}} \operatorname{assoc}^{(t)}(f_j, w)}$$

Fazly et al. (2008): Referential Uncertainty



Fazly et al. (2008): Frequency Effects



Role of Sentential Context

kitty is playing with yarn

He is playing with matches

Sara is cutting with scissors

Ian is washing with soap

X is DOing with Y



Syntactic Bootstrapping

- Children can learn aspects of word meaning by drawing on syntactic structure of the sentence (Gleitman, 1990)
 - E.g., differences in meaning of chase and flee cannot be fully learned through cross-situational learning
- Using syntactic structure in word learning has been computationally modeled in limited settings
 - Niyogi'02, Yu'06, Maurits et al.'09

Alishahi & Fazly (2010): Integrating Syntactic Categories

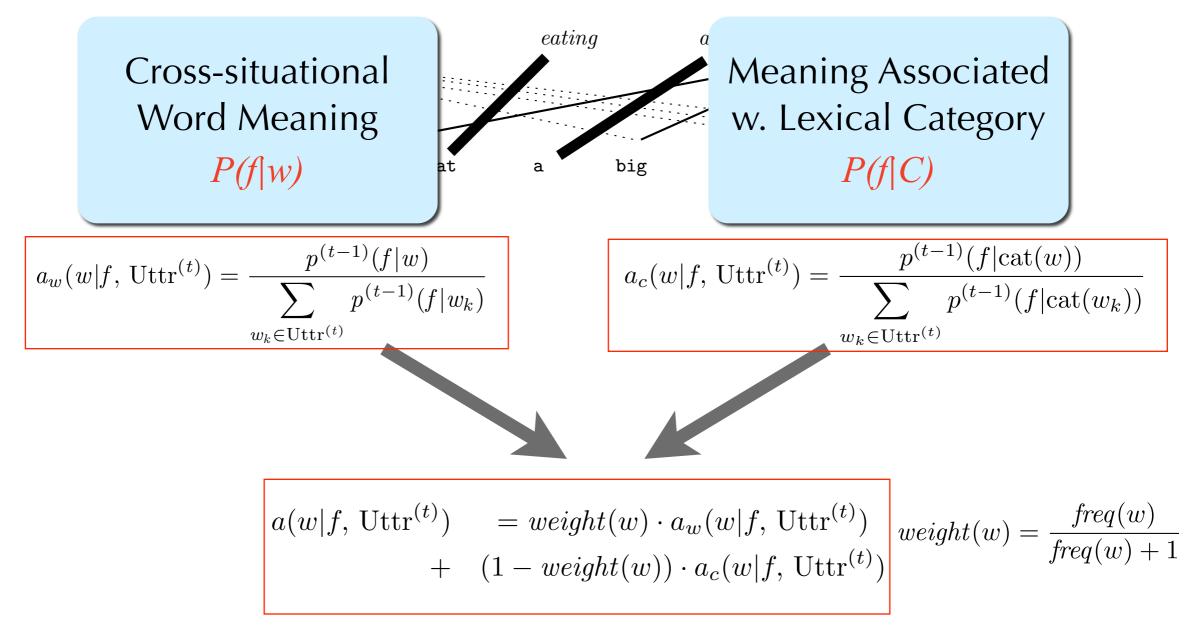
- An extension of the probabilistic model of Fazly et al (2008)
 - Integrate cross-situational and syntactic evidence
 - Assumption: the syntactic category of each word can be determined based on its context

• Input: use manually assigned PoS tags as lexical categories

that is an appleDET AUX DET Ndo you like apple?AUX N V N

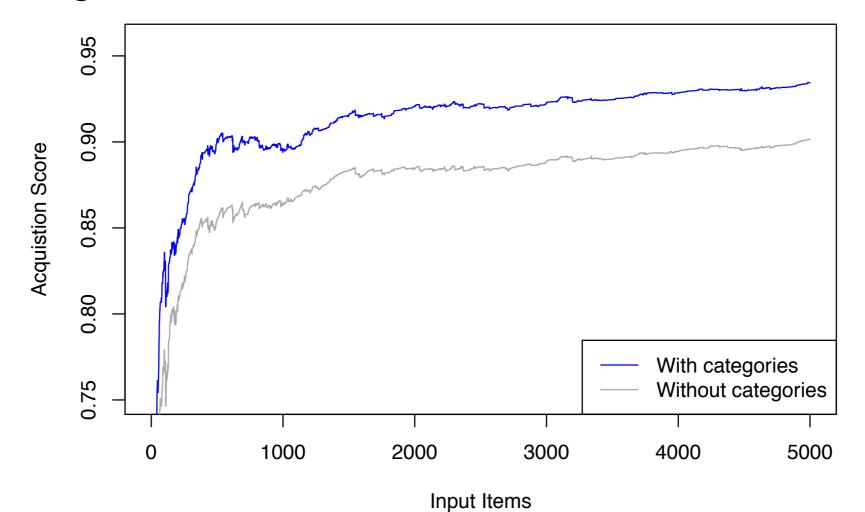
Alishahi & Fazly: Integration Mechanism

• Aligning words and meaning elements: combine crosssituational evidence with lexical categories



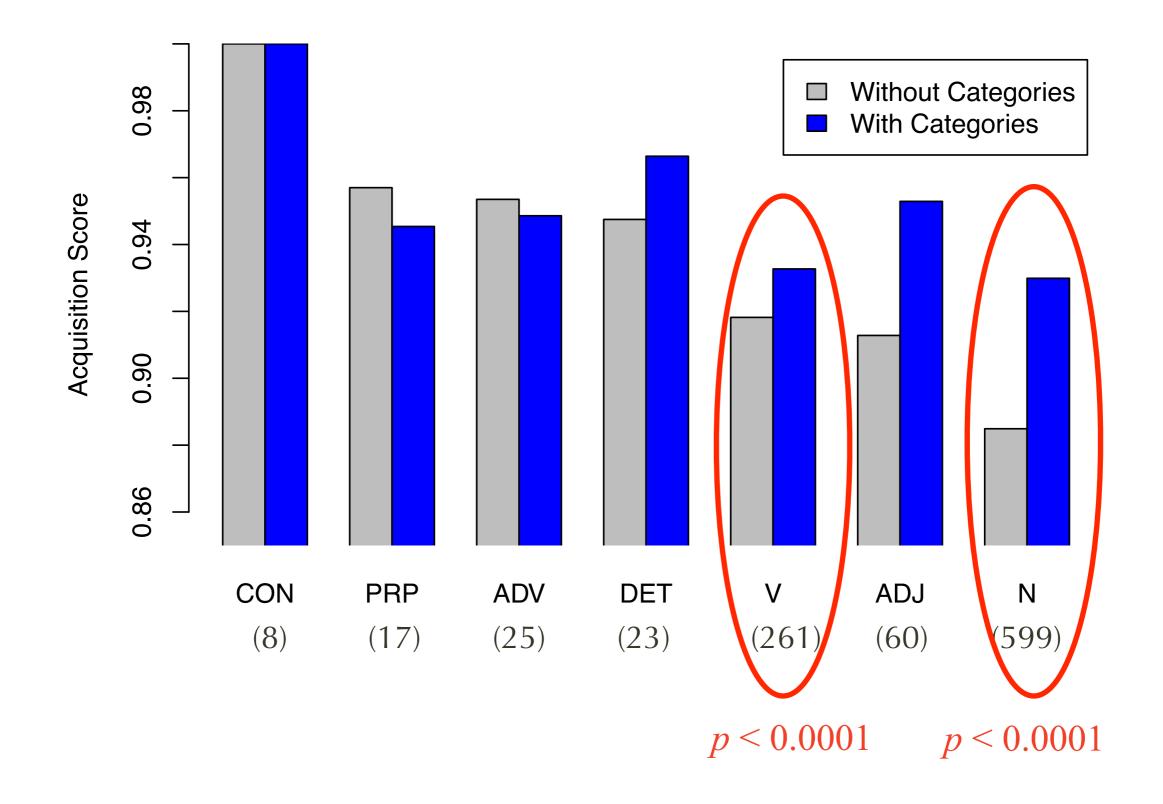
Alishahi & Fazly: Overall Learning Rates

• Learning rate over time:



Integrating lexical categories in word learning improves overall performance

Alishahi & Fazly: Comparing Categories



Computational Word Learning

- Many computational models of word learning suggest that
 - several behavioural patterns can be a by-product of the statistical properties of the input that children receive
 - children's behavioural changes are not necessarily due to a shift in the underlying learning mechanism
 - a unified learning mechanism can explain a variety of effects that have been attributed to task-specific constraints or biases

Open Questions

- Most existing models do not use a realistic representation of semantic information
- Word learning studies are generally limited to mappings between nouns and concrete objects
- In particular, relational or abstract meaning representations are often ignored
- Computational studies of word learning have mostly been carried in isolation and independently of the other aspects of language acquisition